Select the correct answer.

What is the approximate solution to this equation?
[tex]\[ 19 + 2 \ln x = 25 \][/tex]

A. [tex]\( x \approx 0.05 \)[/tex]
B. [tex]\( x \approx 1.93 \)[/tex]
C. [tex]\( x \approx 3 \)[/tex]
D. [tex]\( x \approx 20.09 \)[/tex]



Answer :

To solve the equation [tex]\( 19 + 2 \ln x = 25 \)[/tex], we will follow these steps:

1. Isolate the logarithmic term:
[tex]\[ 19 + 2 \ln x = 25 \][/tex]
Subtract 19 from both sides:
[tex]\[ 2 \ln x = 6 \][/tex]

2. Solve for the logarithm:
Divide both sides by 2 to isolate [tex]\( \ln x \)[/tex]:
[tex]\[ \ln x = 3 \][/tex]

3. Exponentiate to eliminate the logarithm:
Recall that [tex]\( \ln \)[/tex] is the natural logarithm, which is the inverse of the exponential function [tex]\( e \)[/tex]. Therefore, we exponentiate both sides with base [tex]\( e \)[/tex]:
[tex]\[ x = e^3 \][/tex]

4. Approximate the value:
Using the known value of [tex]\( e \approx 2.718 \)[/tex], compute:
[tex]\[ e^3 \approx 2.718^3 \approx 20.085 \][/tex]

Thus, the approximate solution to the equation [tex]\( 19 + 2 \ln x = 25 \)[/tex] is:
[tex]\[ x \approx 20.09 \][/tex]

So, the correct answer from the given choices is:

D. [tex]\( x \approx 20.09 \)[/tex]