What is the mass of [tex]$10.0 \, \text{mol} \, CH_2O_2$[/tex]?

Let's begin by setting up our expression. Which number choice goes in the green box?

1. 1 mole [tex]$CH_2O_2$[/tex]
2. [tex]$6.02 \times 10^{23}$[/tex] molecules [tex][tex]$CH_2O_2$[/tex][/tex]
3. [tex]$46.03 \, \text{g} \, CH_2O_2$[/tex]

Select the appropriate conversion factor.



Answer :

Let's calculate the mass of [tex]\(10.0 \, \text{mol} \, \text{CH}_2\text{O}_2\)[/tex].

To find out the mass, we need to use the formula:

[tex]\[ \text{Mass} = \text{Moles} \times \text{Molar Mass} \][/tex]

Given:
- Moles of [tex]\( \text{CH}_2\text{O}_2 \)[/tex] = [tex]\( 10.0 \, \text{mol} \)[/tex]
- Molar mass of [tex]\( \text{CH}_2\text{O}_2 \)[/tex] = [tex]\( 46.03 \, \text{g/mol} \)[/tex]

Using these values, we substitute into the formula:

[tex]\[ \text{Mass} = 10.0 \, \text{mol} \times 46.03 \, \text{g/mol} \][/tex]

So, the mass of [tex]\( 10.0 \, \text{mol} \, \text{CH}_2\text{O}_2 \)[/tex] is:

[tex]\[ \text{Mass} = 460.3 \, \text{g} \][/tex]

Thus, the number that goes in the green box is:

[tex]\[ 3. \, 46.03 \, \text{g} \, \text{CH}_2\text{O}_2 \][/tex]