Select the correct answer.

The shortest side of a right triangle measures [tex]$3 \sqrt{3}$[/tex] inches. One angle of the triangle measures [tex][tex]$60^{\circ}$[/tex][/tex]. What is the length, in inches, of the hypotenuse of the triangle?

A. [tex]$6 \sqrt{3}$[/tex]
B. 6
C. [tex]$6 \sqrt{2}$[/tex]
D. 3



Answer :

To determine the length of the hypotenuse in a right triangle where the shortest side measures [tex]\(3 \sqrt{3}\)[/tex] inches and one angle is [tex]\(60^\circ\)[/tex], consider the properties of a 30-60-90 triangle.

In a 30-60-90 triangle:
- The ratio of the sides is [tex]\(1\)[/tex] : [tex]\(\sqrt{3}\)[/tex] : [tex]\(2\)[/tex].
- The shortest side (opposite the [tex]\(30^\circ\)[/tex] angle) corresponds to the [tex]\(1\)[/tex] in the ratio.
- The side opposite the [tex]\(60^\circ\)[/tex] angle is [tex]\(\sqrt{3}\)[/tex] times the length of the shortest side.
- The hypotenuse is [tex]\(2\)[/tex] times the length of the shortest side.

Given that the shortest side is [tex]\(3\sqrt{3}\)[/tex]:
- The hypotenuse is [tex]\(2\)[/tex] times this shortest side.

So, the hypotenuse is:
[tex]\[ 2 \times 3\sqrt{3} = 6\sqrt{3} \][/tex]

Thus, the length of the hypotenuse is [tex]\(6\sqrt{3}\)[/tex] inches.

Therefore, the correct answer is:
A. [tex]\(6 \sqrt{3}\)[/tex]