Answer :
Alright, let's proceed with solving the question step-by-step!
Given the expressions [tex]\((a + b) + c\)[/tex] on the left side and [tex]\(b + c\)[/tex] on the right side, we'll work through each side to understand the operations being carried out.
1. Left Side: [tex]\((a + b) + c\)[/tex]
- Start with the inner parentheses [tex]\((a + b)\)[/tex]. This means we're adding the variable [tex]\(a\)[/tex] to the variable [tex]\(b\)[/tex].
- Once we have the result [tex]\(a + b\)[/tex] from the inner parentheses, we add [tex]\(c\)[/tex] to this result.
- Therefore, [tex]\((a + b) + c\)[/tex] simplifies directly to [tex]\(a + b + c\)[/tex].
2. Right Side: [tex]\(b + c\)[/tex]
- Here, we are simply adding the variable [tex]\(b\)[/tex] to the variable [tex]\(c\)[/tex].
- There are no additional steps, so [tex]\(b + c\)[/tex] remains as is.
Comparing both sides:
- The left side simplifies to [tex]\(a + b + c\)[/tex].
- The right side is just [tex]\(b + c\)[/tex].
Thus, the final result, combining both expressions, is:
[tex]\[ (a + b) + c \quad \text{and} \quad b + c \][/tex]
Summarizing, the left side evaluates to [tex]\(a + b + c\)[/tex] while the right side evaluates to [tex]\(b + c\)[/tex].
Given the expressions [tex]\((a + b) + c\)[/tex] on the left side and [tex]\(b + c\)[/tex] on the right side, we'll work through each side to understand the operations being carried out.
1. Left Side: [tex]\((a + b) + c\)[/tex]
- Start with the inner parentheses [tex]\((a + b)\)[/tex]. This means we're adding the variable [tex]\(a\)[/tex] to the variable [tex]\(b\)[/tex].
- Once we have the result [tex]\(a + b\)[/tex] from the inner parentheses, we add [tex]\(c\)[/tex] to this result.
- Therefore, [tex]\((a + b) + c\)[/tex] simplifies directly to [tex]\(a + b + c\)[/tex].
2. Right Side: [tex]\(b + c\)[/tex]
- Here, we are simply adding the variable [tex]\(b\)[/tex] to the variable [tex]\(c\)[/tex].
- There are no additional steps, so [tex]\(b + c\)[/tex] remains as is.
Comparing both sides:
- The left side simplifies to [tex]\(a + b + c\)[/tex].
- The right side is just [tex]\(b + c\)[/tex].
Thus, the final result, combining both expressions, is:
[tex]\[ (a + b) + c \quad \text{and} \quad b + c \][/tex]
Summarizing, the left side evaluates to [tex]\(a + b + c\)[/tex] while the right side evaluates to [tex]\(b + c\)[/tex].