The coordinates of two points are [tex]\( P(7,5) \)[/tex] and [tex]\( Q(-2,7) \)[/tex]. Find the mean of the abscissa of [tex]\( P \)[/tex] and the ordinate of [tex]\( Q \)[/tex].



Answer :

To find the mean of the abscissa of point [tex]\(P\)[/tex] and the ordinate of point [tex]\(Q\)[/tex], follow these steps:

1. Identify the abscissa (x-coordinate) of point [tex]\(P\)[/tex] and the ordinate (y-coordinate) of point [tex]\(Q\)[/tex]:

The coordinates of point [tex]\(P\)[/tex] are [tex]\((7, 5)\)[/tex], where:
[tex]\[ P_x = 7 \quad (\text{abscissa of } P) \][/tex]

The coordinates of point [tex]\(Q\)[/tex] are [tex]\((-2, 7)\)[/tex], where:
[tex]\[ Q_y = 7 \quad (\text{ordinate of } Q) \][/tex]

2. Calculate the mean of these two values:

The formula for the mean of two numbers, [tex]\( a \)[/tex] and [tex]\( b \)[/tex], is given by:
[tex]\[ \text{Mean} = \frac{a + b}{2} \][/tex]

Substitute [tex]\( P_x \)[/tex] and [tex]\( Q_y \)[/tex] into the formula:
[tex]\[ \text{Mean} = \frac{P_x + Q_y}{2} = \frac{7 + 7}{2} \][/tex]

3. Perform the arithmetic operations:

Adding 7 and 7:
[tex]\[ 7 + 7 = 14 \][/tex]

Dividing the sum by 2:
[tex]\[ \frac{14}{2} = 7 \][/tex]

Therefore, the mean of the abscissa of point [tex]\(P\)[/tex] and the ordinate of point [tex]\(Q\)[/tex] is:
[tex]\[ 7.0 \][/tex]

Thus, the final answer is [tex]\( \boxed{7.0} \)[/tex].