Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

Match each verbal description to its equivalent function rule as applied to the given function below.

[tex]\[
\begin{array}{l}
f(x)=3x-7 \\
g(x)=6x-2 \\
g(x)=12x-19 \\
g(x)=6x-9 \\
g(x)=-3x-14 \\
g(x)=3x-7 \\
g(x)=-3x-28 \\
\end{array}
\][/tex]

- The function [tex]\( f \)[/tex] translated 6 units up and 2 units right

- The function [tex]\( f \)[/tex] reflected about the [tex]\( y \)[/tex]-axis and translated 7 units left

- The function [tex]\( f \)[/tex] stretched vertically by a factor of 4 and translated up by 9 units

- The function [tex]\( f \)[/tex] stretched vertically by a factor of 2 and translated up by 5 units



Answer :

Let’s break this down step by step according to the transformations applied to the function [tex]\( f(x) = 3x - 7 \)[/tex]:

1. The function [tex]\( f \)[/tex] translated 6 units up and 2 units right:
- Translating [tex]\( f(x) \)[/tex] 2 units to the right means we have to replace [tex]\( x \)[/tex] by [tex]\( x-2 \)[/tex].
- Translating [tex]\( f(x) \)[/tex] 6 units up means we add 6 to the function.
- Hence, the transformed function is:
[tex]\[ g(x) = f(x - 2) + 6 \][/tex]
Calculating this:
[tex]\[ f(x-2) = 3(x-2) - 7 = 3x - 6 - 7 = 3x - 13 \][/tex]
Then adding 6:
[tex]\[ g(x) = 3x - 13 + 6 = 3x - 7 \][/tex]
So, the equivalent function rule is [tex]\( g(x) = 3x - 7 \)[/tex].

2. The function [tex]\( f \)[/tex] reflected about the y-axis and translated 7 units left:
- Reflecting about the y-axis means replacing [tex]\( x \)[/tex] by [tex]\( -x \)[/tex].
- Translating 7 units to the left means replacing [tex]\( x \)[/tex] by [tex]\( x+7 \)[/tex].
- Hence, the transformed function is:
[tex]\[ g(x) = f(-x + 7) \][/tex]
Calculating this:
[tex]\[ f(-x + 7) = 3(-x + 7) - 7 = -3x + 21 - 7 = -3x + 14 \][/tex]
So, the equivalent function rule is [tex]\( g(x) = -3x + 14 \)[/tex].

3. The function [tex]\( f \)[/tex] stretched vertically by a factor of 4 and translated up by 9 units:
- Stretching vertically by a factor of 4 means multiplying the entire function by 4.
- Translating the function up by 9 units means adding 9.
- Hence, the transformed function is:
[tex]\[ g(x) = 4 f(x) + 9 \][/tex]
Calculating this:
[tex]\[ 4 f(x) = 4(3x - 7) = 12x - 28 \][/tex]
Then adding 9:
[tex]\[ g(x) = 12x - 28 + 9 = 12x - 19 \][/tex]
So, the equivalent function rule is [tex]\( g(x) = 12x - 19 \)[/tex].

4. The function [tex]\( f \)[/tex] stretched vertically by a factor of 2 and translated up by 5 units:
- Stretching vertically by a factor of 2 means multiplying the entire function by 2.
- Translating the function up by 5 units means adding 5.
- Hence, the transformed function is:
[tex]\[ g(x) = 2 f(x) + 5 \][/tex]
Calculating this:
[tex]\[ 2 f(x) = 2(3x - 7) = 6x - 14 \][/tex]
Then adding 5:
[tex]\[ g(x) = 6x - 14 + 5 = 6x - 9 \][/tex]
So, the equivalent function rule is [tex]\( g(x) = 6x - 9 \)[/tex].

To summarize the matches:

- The function [tex]\( f \)[/tex] translated 6 units up and 2 units right: [tex]\( g(x) = 3x - 7 \)[/tex]
- The function [tex]\( f \)[/tex] reflected about the y-axis and translated 7 units left: [tex]\( g(x) = -3x + 14 \)[/tex]
- The function [tex]\( f \)[/tex] stretched vertically by a factor of 4 and translated up by 9 units: [tex]\( g(x) = 12x - 19 \)[/tex]
- The function [tex]\( f \)[/tex] stretched vertically by a factor of 2 and translated up by 5 units: [tex]\( g(x) = 6x - 9 \)[/tex]