Suppose the Sunglasses Hut Company has a profit function given by [tex]P(q) = -0.02q^2 + 4q - 26[/tex], where [tex]q[/tex] is the number of thousands of pairs of sunglasses sold and produced, and [tex]P(q)[/tex] is the total profit, in thousands of dollars, from selling and producing [tex]q[/tex] pairs of sunglasses.

A) Find a simplified expression for the marginal profit function. (Be sure to use the proper variable in your answer.)
[tex]\[ MP(q) = \boxed{\phantom{} }\][/tex]

B) How many pairs of sunglasses (in thousands) should be sold to maximize profits? (If necessary, round your answer to three decimal places.)

Answer: [tex]\[ \boxed{\phantom{} } \][/tex] thousand pairs of sunglasses need to be sold.

C) What are the actual maximum profits (in thousands) that can be expected? (If necessary, round your answer to three decimal places.)

Answer: [tex]\[ \boxed{\phantom{} } \][/tex] thousand dollars of maximum profits can be expected.

Question Help: [tex]\[ \boxed{\phantom{} } \][/tex]



Answer :

Let's address the given problem step by step:

### Part A: Finding the Marginal Profit Function

The profit function provided is:
[tex]\[ P(q) = -0.02q^2 + 4q - 26 \][/tex]

To find the marginal profit function, we need to take the first derivative of the profit function [tex]\( P(q) \)[/tex] with respect to [tex]\( q \)[/tex].

[tex]\[ \frac{dP(q)}{dq} = \frac{d}{dq}(-0.02q^2 + 4q - 26) \][/tex]

Using basic differentiation rules:
[tex]\[ \frac{d}{dq}(-0.02q^2) = -0.04q \][/tex]
[tex]\[ \frac{d}{dq}(4q) = 4 \][/tex]
[tex]\[ \frac{d}{dq}(-26) = 0 \][/tex]

Combining these results:
[tex]\[ MP(q) = -0.04q + 4 \][/tex]

So, the marginal profit function is:
[tex]\[ MP(q) = 4 - 0.04q \][/tex]

### Part B: Finding the Quantity of Sunglasses to Maximize Profits
To maximize profits, we need to find the critical points of the profit function by setting the marginal profit function equal to zero:
[tex]\[ 4 - 0.04q = 0 \][/tex]

Solving for [tex]\( q \)[/tex]:
[tex]\[ 0.04q = 4 \][/tex]
[tex]\[ q = \frac{4}{0.04} \][/tex]
[tex]\[ q = 100 \][/tex]

Therefore, 100 thousand pairs of sunglasses need to be sold to maximize profits.

### Part C: Calculating the Maximum Profit

To find the maximum profit, we evaluate the original profit function [tex]\( P(q) \)[/tex] at [tex]\( q = 100 \)[/tex]:

[tex]\[ P(100) = -0.02(100)^2 + 4(100) - 26 \][/tex]

Calculating each term:
[tex]\[ -0.02(100)^2 = -0.02(10000) = -200 \][/tex]
[tex]\[ 4(100) = 400 \][/tex]
[tex]\[ -26 = -26 \][/tex]

Combining these results:
[tex]\[ P(100) = -200 + 400 - 26 = 174 \][/tex]

So, the maximum profit is 174 thousand dollars.

### Summary of Results
A) The simplified expression for the marginal profit function is:
[tex]\[ MP(q) = 4 - 0.04q \][/tex]

B) To maximize profits, 100 thousand pairs of sunglasses need to be sold.

C) The maximum expected profit is 174 thousand dollars.

Feel free to ask for further clarifications if needed!