The formula [tex]P=\frac{F}{A}[/tex], where [tex]P[/tex] is pressure, [tex]F[/tex] is force, and [tex]A[/tex] is area, is used to calculate pressure. Solve this formula for [tex]F[/tex].

A. [tex]F = P - A[/tex]
B. [tex]F = P + A[/tex]
C. [tex]F = \frac{P}{A}[/tex]
D. [tex]F = P A[/tex]



Answer :

Let's solve the formula [tex]\( P = \frac{F}{A} \)[/tex] for [tex]\( F \)[/tex].

The first step is to understand that we need to isolate [tex]\( F \)[/tex] on one side of the equation. The equation currently describes [tex]\( F \)[/tex] divided by [tex]\( A \)[/tex].

To isolate [tex]\( F \)[/tex], multiply both sides of the equation by [tex]\( A \)[/tex]. This will eliminate [tex]\( A \)[/tex] from the denominator on the right side:

[tex]\[ P \cdot A = \frac{F}{A} \cdot A \][/tex]

Since multiplying by [tex]\( A \)[/tex] and then dividing by [tex]\( A \)[/tex] cancels out [tex]\( A \)[/tex] on the right side, we are left with:

[tex]\[ P \cdot A = F \][/tex]

So, the formula solved for [tex]\( F \)[/tex] is:

[tex]\[ F = P \cdot A \][/tex]

Therefore, the correct choice from the given options is:

[tex]\[ F = P A \][/tex]