Select the correct answer.

The equation of a line is [tex] y = -3x - 2 [/tex]. What are the slope and the [tex] y [/tex]-intercept of the line?

A. slope [tex] = -3 [/tex] and [tex] y [/tex]-intercept [tex] = 2 [/tex]

B. slope [tex] = 3 [/tex] and [tex] y [/tex]-intercept [tex] = -2 [/tex]

C. slope [tex] = 3 [/tex] and [tex] y [/tex]-intercept [tex] = 2 [/tex]

D. slope [tex] = -3 [/tex] and [tex] y [/tex]-intercept [tex] = -2 [/tex]



Answer :

To determine the slope and the [tex]\( y \)[/tex]-intercept of the line given by the equation [tex]\( y = -3x - 2 \)[/tex], we need to identify the coefficients in the standard form of the equation for a straight line.

The equation of a line in slope-intercept form is [tex]\( y = mx + c \)[/tex], where:
- [tex]\( m \)[/tex] is the slope of the line, and
- [tex]\( c \)[/tex] is the [tex]\( y \)[/tex]-intercept of the line.

Given the equation [tex]\( y = -3x - 2 \)[/tex]:

1. Identify the slope:
The coefficient of [tex]\( x \)[/tex] in the equation is [tex]\(-3\)[/tex]. Hence, the slope [tex]\( m \)[/tex] is [tex]\(-3\)[/tex].

2. Identify the [tex]\( y \)[/tex]-intercept:
The constant term in the equation is [tex]\(-2\)[/tex]. Hence, the [tex]\( y \)[/tex]-intercept [tex]\( c \)[/tex] is [tex]\(-2\)[/tex].

Now, let's match these results with the options provided:

A. Slope [tex]\( = -3 \)[/tex] and [tex]\( y \)[/tex]-intercept [tex]\( = 2 \)[/tex]

B. Slope [tex]\( = 3 \)[/tex] and [tex]\( y \)[/tex]-intercept [tex]\( = -2 \)[/tex]

C. Slope [tex]\( = 3 \)[/tex] and [tex]\( y \)[/tex]-intercept [tex]\( = 2 \)[/tex]

D. Slope [tex]\( = -3 \)[/tex] and [tex]\( y \)[/tex]-intercept [tex]\( = -2 \)[/tex]

The correct answer is:
D. Slope [tex]\( = -3 \)[/tex] and [tex]\( y \)[/tex]-intercept [tex]\( = -2 \)[/tex]