Finding the Better Buy

An artist needs to purchase jars of paint. The table below shows different sizes of paint jars and their prices. Which quantity container is the better buy?

\begin{tabular}{|l|c|}
\hline
Size & Price \\
\hline
2-oz jar & [tex]$\$[/tex]1.50[tex]$ \\
\hline
4-oz jar & $[/tex]\[tex]$2.92$[/tex] \\
\hline
8-oz jar & [tex]$\$[/tex]5.68[tex]$ \\
\hline
16-oz jar & $[/tex]\[tex]$11.62$[/tex] \\
\hline
\end{tabular}



Answer :

To determine which paint jar size is the best buy, we need to compare the price per ounce for each jar. Here is a step-by-step solution:

1. Identify the cost of each jar size:
- 2-ounce jar: \[tex]$1.50 - 4-ounce jar: \$[/tex]2.92
- 8-ounce jar: \[tex]$5.68 - 16-ounce jar: \$[/tex]11.62

2. Calculate the price per ounce for each jar size:
- For the 2-ounce jar:
[tex]\[ \text{Price per ounce} = \frac{\$1.50}{2} = \$0.75 \][/tex]
- For the 4-ounce jar:
[tex]\[ \text{Price per ounce} = \frac{\$2.92}{4} = \$0.73 \][/tex]
- For the 8-ounce jar:
[tex]\[ \text{Price per ounce} = \frac{\$5.68}{8} = \$0.71 \][/tex]
- For the 16-ounce jar:
[tex]\[ \text{Price per ounce} = \frac{\$11.62}{16} = \$0.72625 \][/tex]

3. Compare the price per ounce for all jar sizes:
- 2-ounce jar: \[tex]$0.75 per ounce - 4-ounce jar: \$[/tex]0.73 per ounce
- 8-ounce jar: \[tex]$0.71 per ounce - 16-ounce jar: \$[/tex]0.72625 per ounce

4. Identify the jar size with the minimum price per ounce.

From our calculations, the price per ounce values are:
[tex]\[ \$0.75, \$0.73, \$0.71, \$0.72625 \][/tex]

The lowest price per ounce is \$0.71, which corresponds to the 8-ounce jar.

5. Conclusion:
The 8-ounce jar is the best buy, as it offers the lowest cost per ounce of paint.