Answer :

To solve the inequality [tex]\( |3X + 6| \geq 9 \)[/tex], we need to address it by considering the nature of absolute values. The absolute value [tex]\( |A| \geq B \)[/tex] for any expression [tex]\( A \)[/tex] and positive number [tex]\( B \)[/tex] translates to two scenarios:

1. [tex]\( A \geq B \)[/tex]
2. [tex]\( A \leq -B \)[/tex]

Let's apply these scenarios to our inequality [tex]\( |3X + 6| \geq 9 \)[/tex].

### Scenario 1: [tex]\( 3X + 6 \geq 9 \)[/tex]
1. Subtract 6 from both sides:
[tex]\[ 3X \geq 3 \][/tex]

2. Divide both sides by 3:
[tex]\[ X \geq 1 \][/tex]

### Scenario 2: [tex]\( 3X + 6 \leq -9 \)[/tex]
1. Subtract 6 from both sides:
[tex]\[ 3X \leq -15 \][/tex]

2. Divide both sides by 3:
[tex]\[ X \leq -5 \][/tex]

### Combining Both Scenarios
The solutions from both scenarios are:

1. [tex]\( X \geq 1 \)[/tex]
2. [tex]\( X \leq -5 \)[/tex]

So, the complete solution to the inequality [tex]\( |3X + 6| \geq 9 \)[/tex] is:
[tex]\[ X \leq -5 \quad \text{or} \quad X \geq 1 \][/tex]

In interval notation, the solution is:
[tex]\[ (-\infty, -5] \cup [1, \infty) \][/tex]