Answer :
To solve the problem of finding the compositions of functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex], we need to follow the given steps:
1. Define the functions:
[tex]\[ f(x) = 4x^2 + 1 \][/tex]
[tex]\[ g(x) = x^2 - 3 \][/tex]
2. Compute [tex]\( (f \circ g)(x) \)[/tex]:
This means we evaluate [tex]\( f \)[/tex] at [tex]\( g(x) \)[/tex].
[tex]\[ (f \circ g)(x) = f(g(x)) \][/tex]
Substitute [tex]\( g(x) \)[/tex] into [tex]\( f \)[/tex]:
[tex]\[ f(g(x)) = f(x^2 - 3) \][/tex]
Using the definition of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x^2 - 3) = 4(x^2 - 3)^2 + 1 \][/tex]
Simplify inside the parentheses:
[tex]\[ (x^2 - 3)^2 = x^4 - 6x^2 + 9 \][/tex]
Substitute back:
[tex]\[ f(g(x)) = 4(x^4 - 6x^2 + 9) + 1 = 4x^4 - 24x^2 + 36 + 1 = 4x^4 - 24x^2 + 37 \][/tex]
3. Compute [tex]\( (g \circ f)(x) \)[/tex]:
This means we evaluate [tex]\( g \)[/tex] at [tex]\( f(x) \)[/tex].
[tex]\[ (g \circ f)(x) = g(f(x)) \][/tex]
Substitute [tex]\( f(x) \)[/tex] into [tex]\( g \)[/tex]:
[tex]\[ g(f(x)) = g(4x^2 + 1) \][/tex]
Using the definition of [tex]\( g(x) \)[/tex]:
[tex]\[ g(4x^2 + 1) = (4x^2 + 1)^2 - 3 \][/tex]
Simplify inside the parentheses:
[tex]\[ (4x^2 + 1)^2 = 16x^4 + 8x^2 + 1 \][/tex]
Substitute back:
[tex]\[ g(f(x)) = 16x^4 + 8x^2 + 1 - 3 = 16x^4 + 8x^2 - 2 \][/tex]
So, the compositions are:
[tex]\[ (f \circ g)(x) = 4x^4 - 24x^2 + 37 \][/tex]
[tex]\[ (g \circ f)(x) = 16x^4 + 8x^2 - 2 \][/tex]
Therefore, the correct pairings are:
[tex]\[ (f \circ g)(x) = 4x^4 - 24x^2 + 37 \][/tex]
[tex]\[ (g \circ f)(x) = 16x^4 + 8x^2 - 2 \][/tex]
1. Define the functions:
[tex]\[ f(x) = 4x^2 + 1 \][/tex]
[tex]\[ g(x) = x^2 - 3 \][/tex]
2. Compute [tex]\( (f \circ g)(x) \)[/tex]:
This means we evaluate [tex]\( f \)[/tex] at [tex]\( g(x) \)[/tex].
[tex]\[ (f \circ g)(x) = f(g(x)) \][/tex]
Substitute [tex]\( g(x) \)[/tex] into [tex]\( f \)[/tex]:
[tex]\[ f(g(x)) = f(x^2 - 3) \][/tex]
Using the definition of [tex]\( f(x) \)[/tex]:
[tex]\[ f(x^2 - 3) = 4(x^2 - 3)^2 + 1 \][/tex]
Simplify inside the parentheses:
[tex]\[ (x^2 - 3)^2 = x^4 - 6x^2 + 9 \][/tex]
Substitute back:
[tex]\[ f(g(x)) = 4(x^4 - 6x^2 + 9) + 1 = 4x^4 - 24x^2 + 36 + 1 = 4x^4 - 24x^2 + 37 \][/tex]
3. Compute [tex]\( (g \circ f)(x) \)[/tex]:
This means we evaluate [tex]\( g \)[/tex] at [tex]\( f(x) \)[/tex].
[tex]\[ (g \circ f)(x) = g(f(x)) \][/tex]
Substitute [tex]\( f(x) \)[/tex] into [tex]\( g \)[/tex]:
[tex]\[ g(f(x)) = g(4x^2 + 1) \][/tex]
Using the definition of [tex]\( g(x) \)[/tex]:
[tex]\[ g(4x^2 + 1) = (4x^2 + 1)^2 - 3 \][/tex]
Simplify inside the parentheses:
[tex]\[ (4x^2 + 1)^2 = 16x^4 + 8x^2 + 1 \][/tex]
Substitute back:
[tex]\[ g(f(x)) = 16x^4 + 8x^2 + 1 - 3 = 16x^4 + 8x^2 - 2 \][/tex]
So, the compositions are:
[tex]\[ (f \circ g)(x) = 4x^4 - 24x^2 + 37 \][/tex]
[tex]\[ (g \circ f)(x) = 16x^4 + 8x^2 - 2 \][/tex]
Therefore, the correct pairings are:
[tex]\[ (f \circ g)(x) = 4x^4 - 24x^2 + 37 \][/tex]
[tex]\[ (g \circ f)(x) = 16x^4 + 8x^2 - 2 \][/tex]