Select the correct answer.

Consider function [tex]f[/tex].

[tex]
f(x) = 2x^2
[/tex]

What is the value of [tex](f \circ f)(x)[/tex]?

A. [tex]16x^4[/tex]
B. [tex]4x^4[/tex]
C. [tex]8x^4[/tex]
D. [tex]4x^2[/tex]



Answer :

To solve for [tex]\((f \circ f)(x)\)[/tex], we need to find [tex]\(f(f(x))\)[/tex].

1. Start with the given function:
[tex]\[ f(x) = 2x^2 \][/tex]

2. To find [tex]\(f(f(x))\)[/tex], first evaluate [tex]\(f(x)\)[/tex]:
[tex]\[ f(x) = 2x^2 \][/tex]

3. Now substitute [tex]\(f(x)\)[/tex] back into the function [tex]\(f\)[/tex]:
[tex]\[ f(f(x)) = f(2x^2) \][/tex]

4. Next, replace [tex]\(x\)[/tex] with [tex]\(2x^2\)[/tex] in the original function [tex]\(f\)[/tex]:
[tex]\[ f(2x^2) = 2(2x^2)^2 \][/tex]

5. Simplify the expression inside the parentheses:
[tex]\[ (2x^2)^2 = 4x^4 \][/tex]

6. Multiply by the coefficient from the function:
[tex]\[ 2 \cdot 4x^4 = 8x^4 \][/tex]

Thus, the value of [tex]\((f \circ f)(x)\)[/tex] is:
[tex]\[ 8x^4 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{C \; 8x^4} \][/tex]