Rewrite and format the following problem:

Given:
1. A hyperbola [tex] y = \frac{k}{x} + q [/tex] that passes through the points [tex] (-9, -\frac{1}{3}) [/tex] and [tex] (3, 1) [/tex].
2. A parabola [tex] y = a x^2 + q [/tex] that has a turning point at [tex] (0, 3) [/tex] and another point at [tex] (3, 12) [/tex].

Determine the constants [tex] k, q, [/tex] and [tex] a [/tex] for both the hyperbola and the parabola.



Answer :

Let's solve the given problem step-by-step.

### Hyperbola

The equation of the hyperbola is given by:
[tex]\[ y = \frac{k}{x} + q \][/tex]

The hyperbola passes through the points [tex]\((-9, -\frac{1}{3})\)[/tex] and [tex]\((3, 1)\)[/tex].

1. Substitute the point [tex]\((-9, -\frac{1}{3})\)[/tex] into the equation:
[tex]\[ -\frac{1}{3} = \frac{k}{-9} + q \][/tex]
Simplifying, we get:
[tex]\[ -\frac{1}{3} = -\frac{k}{9} + q \][/tex]

2. Substitute the point [tex]\((3, 1)\)[/tex] into the equation:
[tex]\[ 1 = \frac{k}{3} + q \][/tex]

Now we have a system of linear equations:
[tex]\[ -\frac{1}{3} = -\frac{k}{9} + q \][/tex]
[tex]\[ 1 = \frac{k}{3} + q \][/tex]

3. Solve the system of equations:
- Multiply the first equation by 9 to clear the fraction:
[tex]\[ 9 \left(-\frac{1}{3}\right) = 9 \left(-\frac{k}{9} + q\right) \][/tex]
[tex]\[ -3 = -k + 9q \][/tex]
[tex]\[ k = 9q + 3 \][/tex]

- Substitute [tex]\( k = 9q + 3 \)[/tex] into the second equation:
[tex]\[ 1 = \frac{9q + 3}{3} + q \][/tex]
[tex]\[ 1 = 3q + 1 + q \][/tex]
[tex]\[ 1 = 4q + 1 \][/tex]
Subtract 1 from both sides:
[tex]\[ 0 = 4q \][/tex]
[tex]\[ q = 0 \][/tex]

- Substitute [tex]\( q = 0 \)[/tex] back into [tex]\( k = 9q + 3 \)[/tex]:
[tex]\[ k = 9(0) + 3 \][/tex]
[tex]\[ k = 3 \][/tex]

Therefore, the values are:
[tex]\[ k = 3 \][/tex]
[tex]\[ q = 0 \][/tex]

### Parabola

The equation of the parabola is given by:
[tex]\[ y = ax^2 + q \][/tex]

The parabola has a turning point at [tex]\((0, 3)\)[/tex]. This tells us that when [tex]\( x = 0 \)[/tex]:
[tex]\[ y = q \][/tex]
So, [tex]\( q = 3 \)[/tex].

The parabola also passes through the point [tex]\((3, 12)\)[/tex].

1. Substitute the point [tex]\((3, 12)\)[/tex] into the equation:
[tex]\[ 12 = a(3)^2 + 3 \][/tex]
Simplifying, we get:
[tex]\[ 12 = 9a + 3 \][/tex]
Subtract 3 from both sides:
[tex]\[ 9 = 9a \][/tex]
[tex]\[ a = 1 \][/tex]

Therefore, the values are:
[tex]\[ a = 1 \][/tex]
[tex]\[ q = 3 \][/tex]

### Summary

For the hyperbola:
[tex]\[ k = 3 \][/tex]
[tex]\[ q = 0 \][/tex]

For the parabola:
[tex]\[ a = 1 \][/tex]
[tex]\[ q = 3 \][/tex]