Select the correct answer.

Consider this equation:
[tex] \tan (\theta) = -\sqrt{\frac{19}{17}} [/tex]

If [tex] \theta [/tex] is an angle in quadrant II, what is the value of [tex] \cos (\theta) [/tex]?

A. [tex] \frac{\sqrt{19}}{6} [/tex]
B. [tex] \frac{\sqrt{17}}{6} [/tex]
C. [tex] -\frac{\sqrt{19}}{6} [/tex]
D. [tex] -\frac{\sqrt{17}}{6} [/tex]



Answer :

To determine the value of [tex]\(\cos (\theta)\)[/tex] given the equation [tex]\(\tan (\theta) = -\sqrt{\frac{19}{17}}\)[/tex] and knowing that [tex]\(\theta\)[/tex] is an angle in quadrant II, let's follow these steps:

1. Understand the relationship between sine, cosine, and tangent:
[tex]\[ \tan (\theta) = \frac{\sin (\theta)}{\cos (\theta)} \][/tex]

2. Understand that in quadrant II:
- The sine function ([tex]\(\sin (\theta)\)[/tex]) is positive.
- The cosine function ([tex]\(\cos (\theta)\)[/tex]) is negative.

3. Use the given information [tex]\(\tan (\theta) = -\sqrt{\frac{19}{17}}\)[/tex]:
- This means that [tex]\(\frac{\sin (\theta)}{\cos (\theta)} = -\sqrt{\frac{19}{17}}\)[/tex].

4. Identify the Pythagorean identity:
- [tex]\(\sin^2 (\theta) + \cos^2 (\theta) = 1\)[/tex].

5. Express [tex]\(\sin (\theta)\)[/tex] and [tex]\(\cos (\theta)\)[/tex] in terms of the given tangent value:
[tex]\[ \left( \frac{\sin (\theta)}{\cos (\theta)} \right)^2 = \left( -\sqrt{\frac{19}{17}} \right)^2 = \frac{19}{17} \][/tex]

6. Assume [tex]\(\sin(\theta) = \sqrt{A}\)[/tex] and [tex]\(\cos(\theta) = -\sqrt{B}\)[/tex], and then:
[tex]\[ \left( \frac{\sqrt{A}}{-\sqrt{B}} \right)^2 = \frac{A}{B} = \frac{19}{17}. \][/tex]
This implies:
[tex]\[ A = 19 \quad \text{and} \quad B = 17. \][/tex]

7. Use the Pythagorean identity for sine and cosine:
[tex]\[ \sin^2 (\theta) + \cos^2 (\theta) = 1. \][/tex]
Substituting [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ \frac{19}{19 + 17} + \frac{17}{19 + 17} = 1. \][/tex]

8. Determine [tex]\(\cos (\theta)\)[/tex]:
[tex]\[ \cos (\theta) = -\sqrt{\frac{17}{36}} = -\frac{\sqrt{17}}{6}. \][/tex]

The correct answer is:
[tex]\[ \boxed{-\frac{\sqrt{17}}{6}} \][/tex]
Thus, the correct choice is D.