The table represents the function [tex]\( f(x) \)[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-3 & -9 \\
\hline
-2 & -6 \\
\hline
-1 & -3 \\
\hline
0 & 0 \\
\hline
1 & 3 \\
\hline
2 & 6 \\
\hline
3 & 9 \\
\hline
\end{tabular}

What is [tex]\( f(3) \)[/tex]?

A. -9
B. -1
C. 1
D. 9



Answer :

To determine the value of [tex]\( f(3) \)[/tex] from the given table, follow these steps:

1. Understand the table: The table displays pairs of [tex]\( x \)[/tex] and corresponding [tex]\( f(x) \)[/tex] values.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-3 & -9 \\
\hline
-2 & -6 \\
\hline
-1 & -3 \\
\hline
0 & 0 \\
\hline
1 & 3 \\
\hline
2 & 6 \\
\hline
3 & 9 \\
\hline
\end{tabular}

2. Locate [tex]\( x = 3 \)[/tex] in the table:

Check the row where [tex]\( x = 3 \)[/tex].

3. Find the corresponding [tex]\( f(x) \)[/tex]:

For [tex]\( x = 3 \)[/tex], the corresponding [tex]\( f(x) \)[/tex] value is located in the same row. According to the table, when [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 9 \)[/tex].

Hence, [tex]\( f(3) = 9 \)[/tex].

The correct answer is:
[tex]\[ 9 \][/tex]