To determine the value of [tex]\( f(3) \)[/tex] from the given table, follow these steps:
1. Understand the table: The table displays pairs of [tex]\( x \)[/tex] and corresponding [tex]\( f(x) \)[/tex] values.
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-3 & -9 \\
\hline
-2 & -6 \\
\hline
-1 & -3 \\
\hline
0 & 0 \\
\hline
1 & 3 \\
\hline
2 & 6 \\
\hline
3 & 9 \\
\hline
\end{tabular}
2. Locate [tex]\( x = 3 \)[/tex] in the table:
Check the row where [tex]\( x = 3 \)[/tex].
3. Find the corresponding [tex]\( f(x) \)[/tex]:
For [tex]\( x = 3 \)[/tex], the corresponding [tex]\( f(x) \)[/tex] value is located in the same row. According to the table, when [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 9 \)[/tex].
Hence, [tex]\( f(3) = 9 \)[/tex].
The correct answer is:
[tex]\[ 9 \][/tex]