Which represents the inverse of the function [tex]f(x)=4x[/tex]?

A. [tex]h(x)=x+4[/tex]
B. [tex]h(x)=x-4[/tex]
C. [tex]h(x)=\frac{3}{4}x[/tex]
D. [tex]h(x)=\frac{1}{4}x[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = 4x \)[/tex], we need to follow a series of steps:

1. Express the function as an equation in terms of [tex]\( y \)[/tex]:
[tex]\[ y = 4x \][/tex]

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
To isolate [tex]\( x \)[/tex], we divide both sides of the equation by 4:
[tex]\[ x = \frac{y}{4} \][/tex]

3. Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to write the inverse function:
The inverse function [tex]\( h(x) \)[/tex] is given by:
[tex]\[ h(x) = \frac{x}{4} \][/tex]

Thus, the inverse function of [tex]\( f(x) = 4x \)[/tex] is [tex]\( h(x) = \frac{1}{4} x \)[/tex].

Now, let's check the given options to find which one correctly represents the inverse function:
- [tex]\( h(x) = x + 4 \)[/tex] → Incorrect
- [tex]\( h(x) = x - 4 \)[/tex] → Incorrect
- [tex]\( h(x) = \frac{3}{4} x \)[/tex] → Incorrect
- [tex]\( h(x) = \frac{1}{4} x \)[/tex] → Correct

Therefore, the correct option is:
[tex]\[ h(x) = \frac{1}{4} x \][/tex]