Solve [tex](x+3)^2+(x+3)-2=0[/tex].

Let [tex]u = x+3[/tex].

Rewrite the equation in terms of [tex]u[/tex]:
[tex]\[
\begin{array}{l}
u^2 + u - 2 = 0
\end{array}
\][/tex]

Factor the equation:
[tex]\[
(u - 1)(u + 2) = 0
\][/tex]

Therefore, the solutions are:
[tex]\[
u = 1 \quad \text{or} \quad u = -2
\][/tex]

Substitute back [tex]u = x + 3[/tex] to find [tex]x[/tex]:
[tex]\[
x + 3 = 1 \quad \Rightarrow \quad x = -2
\][/tex]
[tex]\[
x + 3 = -2 \quad \Rightarrow \quad x = -5
\][/tex]

So the solutions for [tex]x[/tex] are:
[tex]\[
x = -2 \quad \text{or} \quad x = -5
\][/tex]



Answer :

To solve the equation [tex]\((x+3)^2 + (x+3) - 2 = 0\)[/tex], let's follow these steps:

1. Substitute [tex]\(u = x + 3\)[/tex]:

By letting [tex]\(u = x + 3\)[/tex], the equation [tex]\((x+3)^2 + (x+3) - 2 = 0\)[/tex] can be rewritten in terms of [tex]\(u\)[/tex].

2. Rewrite the equation:

Substitute [tex]\(u\)[/tex] into the equation:

[tex]\[ (x+3)^2 + (x+3) - 2 = 0 \implies u^2 + u - 2 = 0 \][/tex]

3. Factor the quadratic equation:

To solve [tex]\(u^2 + u - 2 = 0\)[/tex], we need to factor it.

[tex]\[ u^2 + u - 2 = 0 \][/tex]

We look for two numbers that multiply to [tex]\(-2\)[/tex] and add up to [tex]\(1\)[/tex]. These numbers are [tex]\(2\)[/tex] and [tex]\(-1\)[/tex]:

[tex]\[ u^2 + u - 2 = (u - 1)(u + 2) = 0 \][/tex]

4. Solve for [tex]\(u\)[/tex]:

Now that we have factored the equation, we can set each factor to zero and solve for [tex]\(u\)[/tex].

[tex]\[ (u - 1) = 0 \quad \text{or} \quad (u + 2) = 0 \][/tex]

[tex]\[ u = 1 \quad \text{or} \quad u = -2 \][/tex]

5. Substitute back [tex]\(x + 3 = u\)[/tex]:

We need to find [tex]\(x\)[/tex] using [tex]\(u = x + 3\)[/tex]:

For [tex]\(u = 1\)[/tex]:

[tex]\[ x + 3 = 1 \implies x = 1 - 3 \implies x = -2 \][/tex]

For [tex]\(u = -2\)[/tex]:

[tex]\[ x + 3 = -2 \implies x = -2 - 3 \implies x = -5 \][/tex]

6. Conclusion:

The solutions to the original equation [tex]\((x + 3)^2 + (x + 3) - 2 = 0\)[/tex] are:

[tex]\[ x = -2 \quad \text{and} \quad x = -5 \][/tex]