Select the correct answer.

Point [tex]$R$[/tex] divides [tex]$\overline{EF}$[/tex] in the ratio [tex]$1:5$[/tex]. If the coordinates of [tex]$E$[/tex] and [tex]$F$[/tex] are [tex]$(4, 8)$[/tex] and [tex]$(11, 4)$[/tex], respectively, what are the coordinates of [tex]$R$[/tex] to two decimal places?

A. [tex]$(4.66, 7.62)$[/tex]

B. [tex]$(6, 6.86)$[/tex]

C. [tex]$(5.17, 7.33)$[/tex]

D. [tex]$(9.83, 4.67)$[/tex]



Answer :

To find the coordinates of point [tex]\( R \)[/tex] which divides the line segment [tex]\(\overline{EF}\)[/tex] in the ratio [tex]\(1:5\)[/tex], we need to use the section formula. The section formula for a point dividing a line segment in the ratio [tex]\(m : n\)[/tex] is:

[tex]\[ (x, y) = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \][/tex]

Given the coordinates of [tex]\(E\)[/tex] and [tex]\(F\)[/tex]:
[tex]\[ E = (4, 8) \][/tex]
[tex]\[ F = (11, 4) \][/tex]

The ratio [tex]\(1 : 5\)[/tex] corresponds to [tex]\(m = 1\)[/tex] and [tex]\(n = 5\)[/tex].

Substituting these values into the section formula:

[tex]\[ R_x = \frac{1 \cdot 11 + 5 \cdot 4}{1 + 5} = \frac{11 + 20}{6} = \frac{31}{6} \approx 5.17 \][/tex]

[tex]\[ R_y = \frac{1 \cdot 4 + 5 \cdot 8}{1 + 5} = \frac{4 + 40}{6} = \frac{44}{6} \approx 7.33 \][/tex]

Therefore, the coordinates of [tex]\(R\)[/tex] to two decimal places are:

[tex]\[ (5.17, 7.33) \][/tex]

Hence, the correct answer is:

C. [tex]\((5.17, 7.33)\)[/tex]