Answer :

To find the value of [tex]\(\sec \frac{13 \pi}{6}\)[/tex], let's proceed step-by-step.

1. Convert the given angle to a more familiar range:
[tex]\[ \frac{13 \pi}{6} \][/tex]
Since [tex]\(\frac{12 \pi}{6} = 2\pi\)[/tex], we have:
[tex]\[ \frac{13 \pi}{6} = 2\pi + \frac{\pi}{6} \][/tex]
Thus, [tex]\(\frac{13 \pi}{6}\)[/tex] is equivalent to [tex]\(\frac{\pi}{6}\)[/tex] in terms of periodicity because [tex]\(2\pi\)[/tex] is a full rotation in radians.

2. Evaluate the secant function:
The secant function is defined as:
[tex]\[ \sec x = \frac{1}{\cos x} \][/tex]
Therefore:
[tex]\[ \sec \frac{13 \pi}{6} = \sec \left(\frac{\pi}{6}\right) \][/tex]

3. Determine [tex]\(\cos \frac{\pi}{6}\)[/tex]:
From trigonometric values, we know:
[tex]\[ \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \][/tex]

4. Calculate the secant value:
[tex]\[ \sec \frac{\pi}{6} = \frac{1}{\cos \frac{\pi}{6}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \][/tex]

5. Numerical approximation:
The numerical value of [tex]\(\sec \frac{\pi}{6}\)[/tex] turns out to be approximately:
[tex]\[ 1.1547005383792517 \][/tex]

So, the value of [tex]\(\sec \frac{13 \pi}{6}\)[/tex] is indeed:
[tex]\[ 1.1547005383792517 \][/tex]