If [tex]$s(x) = 2 - x^2$[/tex] and [tex]$t(x) = 3x$[/tex], which value is equivalent to [tex]$(s \circ f)(-7)$[/tex]?

A. [tex]$-439$[/tex]
B. [tex]$-141$[/tex]
C. [tex]$153$[/tex]
D. [tex]$443$[/tex]



Answer :

To solve this problem, we need to find the value of [tex]\((s \circ t)(-7)\)[/tex]. This means we need to first apply the function [tex]\( t(x) \)[/tex] to the input [tex]\(-7\)[/tex] and then apply the function [tex]\( s(x) \)[/tex] to the result. Here is the step-by-step procedure:

1. Apply the function [tex]\( t(x) \)[/tex] to [tex]\(-7\)[/tex]:

Start with [tex]\( t(x) = 3x \)[/tex].

Plug in [tex]\( x = -7 \)[/tex]:
[tex]\[ t(-7) = 3 \times (-7) = -21 \][/tex]

2. Now, apply the function [tex]\( s(x) \)[/tex] to the result of [tex]\( t(-7) \)[/tex]:

The result from the first step is [tex]\(-21\)[/tex], so we need to find [tex]\( s(-21) \)[/tex].

Use the function [tex]\( s(x) = 2 - x^2 \)[/tex].

Plug in [tex]\( x = -21 \)[/tex]:
[tex]\[ s(-21) = 2 - (-21)^2 \][/tex]

3. Calculate the value:

First, calculate [tex]\( (-21)^2 \)[/tex]:
[tex]\[ (-21)^2 = 441 \][/tex]

Next, substitute this back into the function [tex]\( s(x) \)[/tex]:
[tex]\[ s(-21) = 2 - 441 = -439 \][/tex]

Therefore, the value of [tex]\((s \circ t)(-7)\)[/tex] is [tex]\(-439\)[/tex].

From the given options, the correct answer is [tex]\(-439\)[/tex].