The table shows how far a distance runner has traveled since the race began. What is her average rate of change, in miles per hour, during the interval 0.75 to 1.00 hours?

\begin{tabular}{|c|c|}
\hline
\textbf{Time Elapsed} (Hours) & \textbf{Miles Traveled} (Miles) \\
\hline
0.50 & 2.00 \\
\hline
0.75 & 3.50 \\
\hline
1.00 & 4.75 \\
\hline
\end{tabular}

A. 4.75 miles per hour

B. 5.00 miles per hour

C. 5.50 miles per hour

D. 6.00 miles per hour



Answer :

To determine the average rate of change in miles per hour during the interval from 0.75 to 1.00 hours, we can follow these steps:

1. Identify the given data points:
- At [tex]\( t = 0.75 \)[/tex] hours, the distance traveled is [tex]\( 3.50 \)[/tex] miles.
- At [tex]\( t = 1.00 \)[/tex] hours, the distance traveled is [tex]\( 4.75 \)[/tex] miles.

2. Use the formula for the average rate of change:
[tex]\[ \text{Average rate of change} = \frac{\Delta \text{Distance}}{\Delta \text{Time}} \][/tex]
Where [tex]\(\Delta\)[/tex] represents the change in the respective quantities.

3. Calculate [tex]\(\Delta \text{Distance}\)[/tex] and [tex]\(\Delta \text{Time}\)[/tex]:
- Change in Distance ([tex]\(\Delta \text{Distance}\)[/tex]):
[tex]\[ \Delta \text{Distance} = \text{Distance at } t = 1.00 \text{ hours} - \text{Distance at } t = 0.75 \text{ hours} \][/tex]
[tex]\[ \Delta \text{Distance} = 4.75 \text{ miles} - 3.50 \text{ miles} = 1.25 \text{ miles} \][/tex]

- Change in Time ([tex]\(\Delta \text{Time}\)[/tex]):
[tex]\[ \Delta \text{Time} = 1.00 \text{ hours} - 0.75 \text{ hours} = 0.25 \text{ hours} \][/tex]

4. Substitute the changes into the formula:
[tex]\[ \text{Average rate of change} = \frac{1.25 \text{ miles}}{0.25 \text{ hours}} \][/tex]

5. Perform the division:
[tex]\[ \frac{1.25 \text{ miles}}{0.25 \text{ hours}} = 5.00 \text{ miles per hour} \][/tex]

Thus, the average rate of change in miles per hour during the interval from 0.75 to 1.00 hours is [tex]\( 5.00 \)[/tex] miles per hour.

The correct answer is:
5.00 miles per hour