Which of the following is equivalent to the radical expression below when [tex]x \geq 0[/tex]?

[tex]\sqrt{2 x} \cdot \sqrt{x+3}[/tex]

A. [tex]\sqrt{2 x^2+6 x}[/tex]
B. [tex]\sqrt{2 x^2+x}[/tex]
C. [tex]\sqrt{x^2+6 x}[/tex]
D. [tex]\sqrt{2 x^2+3 x}[/tex]



Answer :

To solve the problem, we start with the given expression and simplify it step-by-step.

We are given the radical expression:
[tex]\[ \sqrt{2 x} \cdot \sqrt{x + 3} \][/tex]

Step 1: Combine the radicals under a single square root. The property of radicals we will use is:
[tex]\[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \][/tex]

Using this property, we combine the terms under one square root:
[tex]\[ \sqrt{2 x} \cdot \sqrt{x + 3} = \sqrt{(2 x) \cdot (x + 3)} \][/tex]

Step 2: Simplify the expression inside the square root. We use distributive property to multiply the terms inside the square root:
[tex]\[ (2 x) \cdot (x + 3) = 2 x \cdot x + 2 x \cdot 3 \][/tex]
[tex]\[ = 2 x^2 + 6 x \][/tex]

Therefore, our expression under a single square root becomes:
[tex]\[ \sqrt{2 x} \cdot \sqrt{x + 3} = \sqrt{2 x^2 + 6 x} \][/tex]

Step 3: Match our simplified expression with the given choices. We find that option A matches our simplified expression:

Option A: [tex]\(\sqrt{2 x^2 + 6 x}\)[/tex]

Thus, the equivalent expression is:

Answer: A. [tex]\(\sqrt{2 x^2+6 x}\)[/tex]