1. Name the property used: [tex](-6) + (-5) = (-5) + (-6)[/tex]

2. Evaluate: [tex]27 + [(-10) + 1][/tex]

3. Simplify: [tex]0.135 \times 15[/tex]

4. Find the range of the data: [tex]13, 25, 32, 6, 52, 45[/tex]

5. If [tex]\frac{2}{3}[/tex] of a number is 6, find the number.

6. Between which two numbers does [tex]\frac{11}{4}[/tex] lie?



Answer :

Sure, let's address each of the problems step-by-step:

### 1. Property Used: [tex]$(-6) + (-5) = (-5) + (-6)$[/tex]
The property demonstrated here is the Commutative Property of Addition. This property states that the order in which numbers are added does not change the sum. In other words, [tex]\( a + b = b + a \)[/tex]. Thus, [tex]\( (-6) + (-5) = (-5) + (-6) \)[/tex].

### 2. Evaluate: [tex]\( 27 + [(-10) + 1] \)[/tex]
Let's break this down step-by-step:
- First, evaluate the expression inside the brackets: [tex]\( (-10) + 1 = -9 \)[/tex].
- Now, add the result to 27: [tex]\( 27 + (-9) = 27 - 9 = 18 \)[/tex].

So, the evaluation of [tex]\( 27 + [(-10) + 1] \)[/tex] is 18.

### 3. Find [tex]\( 0.135 = 15 \)[/tex]
This appears to be a malformed equation because it states [tex]\( 0.135 = 15 \)[/tex], which is incorrect. There is no meaningful solution as [tex]\( 0.135 \)[/tex] does not equal 15. Hence, this is mathematically false.

### 4. Find the Range of the Data Set: [tex]\( 13, 25, 32, 6, 52, 45 \)[/tex]
To find the range of a data set:
- Identify the maximum value: [tex]\( \max(13, 25, 32, 6, 52, 45) = 52 \)[/tex]
- Identify the minimum value: [tex]\( \min(13, 25, 32, 6, 52, 45) = 6 \)[/tex]
- Calculate the range: [tex]\( \text{Range} = \max - \min = 52 - 6 = 46 \)[/tex]

So, the range of the data set is 46.

### 5. If [tex]\( \frac{2}{3} \)[/tex] of a Number is 6, Find the Number
Let the unknown number be [tex]\( x \)[/tex]:
- According to the problem: [tex]\( \frac{2}{3} x = 6 \)[/tex]
- Solving for [tex]\( x \)[/tex], we multiply both sides by the reciprocal of [tex]\( \frac{2}{3} \)[/tex]:
[tex]\[ x = 6 \cdot \frac{3}{2} = 6 \cdot 1.5 = 9 \][/tex]

Thus, the number is 9.0.

### 6. Between Which Two Numbers Does [tex]\( \frac{11}{4} \)[/tex] Lie?
Let's convert [tex]\( \frac{11}{4} \)[/tex] to a mixed number:
- Dividing 11 by 4 gives us 2 with a remainder of 3, so:
[tex]\[ \frac{11}{4} = 2 \frac{3}{4} \][/tex]
- Therefore, [tex]\( 2.75 \)[/tex] lies between 2 and 3.

Thus, [tex]\( \frac{11}{4} \)[/tex] lies between the numbers 2 and 3.