Sure! Let's solve this step-by-step.
We are given the expression:
[tex]$
\left(4.8 \times 10^7\right) + 6,500,000
$[/tex]
Let's start by converting [tex]\(6,500,000\)[/tex] to scientific notation:
[tex]$
6,500,000 = 6.5 \times 10^6
$[/tex]
Now, we will add [tex]\(4.8 \times 10^7\)[/tex] and [tex]\(6.5 \times 10^6\)[/tex]:
Since [tex]\(4.8 \times 10^7\)[/tex] and [tex]\(6.5 \times 10^6\)[/tex] are not initially in the same power of ten, let's convert [tex]\(6.5 \times 10^6\)[/tex] to the same power of ten as [tex]\(4.8 \times 10^7\)[/tex]:
[tex]$
6.5 \times 10^6 = 0.65 \times 10^7
$[/tex]
Now we can add the two numbers:
[tex]$
4.8 \times 10^7 + 0.65 \times 10^7
$[/tex]
Combine their coefficients:
[tex]$
(4.8 + 0.65) \times 10^7 = 5.45 \times 10^7
$[/tex]
So, the value of the expression is:
[tex]$
5.45 \times 10^7
$[/tex]
Therefore, the correct choice is:
(a) [tex]\(5.45 \times 10^7\)[/tex]