Look at the expression.

[tex]\[ \left(4.8 \times 10^7\right) + 6,500,000 \][/tex]

What is the value of the expression?

A. [tex]\(5.45 \times 10^7\)[/tex]
B. [tex]\(11.3 \times 10^7\)[/tex]
C. [tex]\(4.865 \times 10^8\)[/tex]



Answer :

Sure! Let's solve this step-by-step.

We are given the expression:
[tex]$ \left(4.8 \times 10^7\right) + 6,500,000 $[/tex]

Let's start by converting [tex]\(6,500,000\)[/tex] to scientific notation:
[tex]$ 6,500,000 = 6.5 \times 10^6 $[/tex]

Now, we will add [tex]\(4.8 \times 10^7\)[/tex] and [tex]\(6.5 \times 10^6\)[/tex]:

Since [tex]\(4.8 \times 10^7\)[/tex] and [tex]\(6.5 \times 10^6\)[/tex] are not initially in the same power of ten, let's convert [tex]\(6.5 \times 10^6\)[/tex] to the same power of ten as [tex]\(4.8 \times 10^7\)[/tex]:
[tex]$ 6.5 \times 10^6 = 0.65 \times 10^7 $[/tex]

Now we can add the two numbers:
[tex]$ 4.8 \times 10^7 + 0.65 \times 10^7 $[/tex]

Combine their coefficients:
[tex]$ (4.8 + 0.65) \times 10^7 = 5.45 \times 10^7 $[/tex]

So, the value of the expression is:
[tex]$ 5.45 \times 10^7 $[/tex]

Therefore, the correct choice is:

(a) [tex]\(5.45 \times 10^7\)[/tex]