Let's solve this problem step by step.
1. Understand the Given Values:
- Voltage ([tex]\( V \)[/tex]): 10 volts (V)
- Resistance ([tex]\( R \)[/tex]): 1 kilo-ohm (kΩ)
2. Convert Resistance to Ohms:
The resistance is given in kilo-ohms, and we need to convert it to ohms for calculations.
[tex]\[
1 \text{ kΩ} = 1000 \text{ Ω}
\][/tex]
Therefore,
[tex]\[
R = 1000 \text{ Ω}
\][/tex]
3. Apply Ohm's Law:
Ohm's Law is given by the formula:
[tex]\[
V = IR
\][/tex]
where [tex]\( V \)[/tex] is the voltage, [tex]\( I \)[/tex] is the current, and [tex]\( R \)[/tex] is the resistance. We need to solve for the current [tex]\( I \)[/tex], so we rearrange the formula:
[tex]\[
I = \frac{V}{R}
\][/tex]
4. Substitute the Given Values:
We substitute [tex]\( V = 10 \)[/tex] volts and [tex]\( R = 1000 \)[/tex] ohms into the formula.
[tex]\[
I = \frac{10 \text{ V}}{1000 \text{ Ω}}
\][/tex]
5. Calculate the Current:
[tex]\[
I = \frac{10}{1000}
\][/tex]
[tex]\[
I = 0.01 \text{ A}
\][/tex]
6. Conclusion:
The value of the current in the circuit is [tex]\( 0.01 \)[/tex] amperes (A).
Therefore, the value of the current is [tex]\( 0.01 \)[/tex] A.