The genotype of [tex]$F _1$[/tex] individuals in a tetrahybrid cross is AaBbCcDd. Assuming independent assortment of these four genes, what are the probabilities that [tex]$F_2$[/tex] offspring will have the following genotypes?

(a) aabbccdd

(b) [tex]$A a B b C c D d$[/tex]

(c) [tex]$A A B B C C D D$[/tex]

(d) [tex]$A a B B c c D d$[/tex]

(e) [tex]$A a B B C C d d$[/tex]



Answer :

Let's address each of these genotypes step-by-step, assuming independent assortment of the four genes. In a tetrahybrid cross involving the genotypes AaBbCcDd, each allele has an equal probability of being passed on. We will calculate the probabilities for each specific genotype in the [tex]$F_2$[/tex] generation.

### (a) aabbccdd
This genotype is homozygous recessive for all alleles (aa bb cc dd).

The probability of obtaining aa from Aa x Aa is:
[tex]\[ P(aa) = \frac{1}{4} \][/tex]

The probability of obtaining bb from Bb x Bb is:
[tex]\[ P(bb) = \frac{1}{4} \][/tex]

The probability of obtaining cc from Cc x Cc is:
[tex]\[ P(cc) = \frac{1}{4} \][/tex]

The probability of obtaining dd from Dd x Dd is:
[tex]\[ P(dd) = \frac{1}{4} \][/tex]

Since the genes assort independently, we multiply the probabilities:
[tex]\[ P(aabbccdd) = \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) = \frac{1}{256} \][/tex]

So, the probability is:
[tex]\[ P(aabbccdd) = 0.00390625 \][/tex]

### (b) AaBbCcDd
This genotype is heterozygous for all alleles (Aa Bb Cc Dd).

The probability of obtaining Aa from Aa × Aa is:
[tex]\[ P(Aa) = \frac{1}{2} \][/tex]

The probability of obtaining Bb from Bb × Bb is:
[tex]\[ P(Bb) = \frac{1}{2} \][/tex]

The probability of obtaining Cc from Cc × Cc is:
[tex]\[ P(Cc) = \frac{1}{2} \][/tex]

The probability of obtaining Dd from Dd × Dd is:
[tex]\[ P(Dd) = \frac{1}{2} \][/tex]

Multiplying the probabilities gives:
[tex]\[ P(AaBbCcDd) = \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) = \frac{1}{16} \][/tex]

So, the probability is:
[tex]\[ P(AaBbCcDd) = 0.0625 \][/tex]

### (c) AABBCCDD
This genotype is homozygous dominant for all alleles (AA BB CC DD).

The probability of obtaining AA from Aa x Aa is:
[tex]\[ P(AA) = \frac{1}{4} \][/tex]

The probability of obtaining BB from Bb x Bb is:
[tex]\[ P(BB) = \frac{1}{4} \][/tex]

The probability of obtaining CC from Cc x Cc is:
[tex]\[ P(CC) = \frac{1}{4} \][/tex]

The probability of obtaining DD from Dd x Dd is:
[tex]\[ P(DD) = \frac{1}{4} \][/tex]

Multiplying these probabilities gives:
[tex]\[ P(AABBCCDD) = \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) = \frac{1}{256} \][/tex]

So, the probability is:
[tex]\[ P(AABBCCDD) = 0.00390625 \][/tex]

### (d) AaBBccDd
This genotype is heterozygous for Aa and Dd, homozygous dominant for BB, and homozygous recessive for cc.

The probability of obtaining Aa from Aa x Aa is:
[tex]\[ P(Aa) = \frac{1}{2} \][/tex]

The probability of obtaining BB from Bb x Bb is:
[tex]\[ P(BB) = \frac{1}{4} \][/tex]

The probability of obtaining cc from Cc x Cc is:
[tex]\[ P(cc) = \frac{1}{4} \][/tex]

The probability of obtaining Dd from Dd x Dd is:
[tex]\[ P(Dd) = \frac{1}{2} \][/tex]

Multiplying these probabilities gives:
[tex]\[ P(AaBBccDd) = \left(\frac{1}{2}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{1}{2}\right) = \frac{1}{64} \][/tex]

So, the probability is:
[tex]\[ P(AaBBccDd) = 0.015625 \][/tex]

### (e) AaBBCCdd
This genotype is heterozygous for Aa, homozygous dominant for BB and CC, and homozygous recessive for dd.

The probability of obtaining Aa from Aa x Aa is:
[tex]\[ P(Aa) = \frac{1}{2} \][/tex]

The probability of obtaining BB from Bb x Bb is:
[tex]\[ P(BB) = \frac{1}{4} \][/tex]

The probability of obtaining CC from Cc x Cc is:
[tex]\[ P(CC) = \frac{1}{4} \][/tex]

The probability of obtaining dd from Dd x Dd is:
[tex]\[ P(dd) = \frac{1}{4} \][/tex]

Multiplying these probabilities gives:
[tex]\[ P(AaBBCCdd) = \left(\frac{1}{2}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) = \frac{1}{128} \][/tex]

So, the probability is:
[tex]\[ P(AaBBCCdd) = 0.0078125 \][/tex]