Given that [tex]a(n)[/tex] represents the total number of dots in the figure:

When [tex]n=1[/tex], there is 1 dot.
When [tex]n=2[/tex], there are 3 dots.
When [tex]n=3[/tex], there are 6 dots.

Notice that the total number of dots [tex]d(n)[/tex] increases by [tex]n[/tex] each time.

Use induction to prove that [tex]d(n)=\frac{n(n+1)}{2}[/tex].

Part A
Prove the statement is true for [tex]n=1[/tex].
Type your answer in the box.



Answer :

To prove the statement [tex]\( d(n) = \frac{n(n+1)}{2} \)[/tex] is true for [tex]\( n = 1 \)[/tex]:

1. First, we need to verify the value of [tex]\( d(n) \)[/tex] when [tex]\( n = 1 \)[/tex].

2. For [tex]\( n = 1 \)[/tex], substitute [tex]\( n = 1 \)[/tex] into the formula [tex]\( d(n) = \frac{n(n+1)}{2} \)[/tex]:
[tex]\[ d(1) = \frac{1 \cdot (1+1)}{2} \][/tex]

3. Simplify the expression:
[tex]\[ d(1) = \frac{1 \cdot 2}{2} \][/tex]
[tex]\[ d(1) = \frac{2}{2} \][/tex]
[tex]\[ d(1) = 1 \][/tex]

4. Therefore, for [tex]\( n = 1 \)[/tex], [tex]\( d(n) = \frac{n(n+1)}{2} \)[/tex] results in 1, which matches the given number of dots.

Thus, the statement [tex]\( d(n) = \frac{n(n+1)}{2} \)[/tex] is true for [tex]\( n = 1 \)[/tex].