45. If [tex] -3|n-2|\ \textless \ -9 [/tex], which of the following is a possible value of [tex] n [/tex]?

A. -5
B. -1
C. 1
D. 5



Answer :

To solve the inequality [tex]\(-3|n-2| < -9\)[/tex], let's break it down step by step.

1. Isolate the absolute value term:
[tex]\[ -3|n-2| < -9 \][/tex]
We start by dividing both sides of the inequality by [tex]\(-3\)[/tex], keeping in mind that dividing by a negative number reverses the inequality sign:
[tex]\[ |n-2| > 3 \][/tex]

2. Understand the inequality involving the absolute value:
The absolute value inequality [tex]\(|n-2| > 3\)[/tex] can be broken into two inequalities:
[tex]\[ n - 2 > 3 \quad \text{or} \quad n - 2 < -3 \][/tex]

3. Solve each inequality separately:

a. [tex]\( n - 2 > 3 \)[/tex]
[tex]\[ n > 5 \][/tex]

b. [tex]\( n - 2 < -3 \)[/tex]
[tex]\[ n < -1 \][/tex]

4. Combine the solutions:
[tex]\[ n > 5 \quad \text{or} \quad n < -1 \][/tex]

5. Evaluate the provided options:

- Option A: [tex]\( n = -5 \)[/tex]
[tex]\[ -5 < -1 \quad \text{(This satisfies \( n < -1 \))} \][/tex]
- Option B: [tex]\( n = -1 \)[/tex]
[tex]\[ -1 \not< -1 \quad \text{(This does not satisfy \( n < -1 \))} \][/tex]
- Option C: [tex]\( n = 1 \)[/tex]
[tex]\[ 1 \not> 5 \quad \text{and} \quad 1 \not< -1 \quad \text{(This does not satisfy either inequality)} \][/tex]
- Option D: [tex]\( n = 5 \)[/tex]
[tex]\[ 5 \not> 5 \quad \text{(This does not satisfy \( n > 5 \))} \][/tex]

From these evaluations, only option [tex]\(A\)[/tex] ([tex]\(n = -5\)[/tex]) satisfies one of the inequalities ([tex]\( n < -1 \)[/tex]).

Therefore, the possible value of [tex]\( n \)[/tex] is [tex]\(\boxed{-5}\)[/tex].