Question 8 (Multiple Choice Worth 1 point)

Find the product of [tex]$(x+3)(x-3)$[/tex].

A. [tex]$x^2 - 6x + 9$[/tex]

B. [tex][tex]$x^2 + 6x + 9$[/tex][/tex]

C. [tex]$x^2 + 9$[/tex]

D. [tex]$x^2 - 9$[/tex]



Answer :

Let's first solve for the product of [tex]\((x+3)(x-3)\)[/tex].

Step-by-step Solution:

1. Distribute each term in the first binomial to each term in the second binomial.

[tex]\[ (x + 3)(x - 3) \][/tex]

2. Apply the distributive property (also known as the FOIL method for binomials):

[tex]\[ (x + 3)(x - 3) = x \cdot x + x \cdot (-3) + 3 \cdot x + 3 \cdot (-3) \][/tex]

3. Calculate each term:

- [tex]\(x \cdot x = x^2\)[/tex]
- [tex]\(x \cdot (-3) = -3x\)[/tex]
- [tex]\(3 \cdot x = 3x\)[/tex]
- [tex]\(3 \cdot (-3) = -9\)[/tex]

4. Combine all the terms:

[tex]\[ x^2 + (-3x) + (3x) + (-9) \][/tex]

5. Simplify the combined expression by combining like terms:

- [tex]\(-3x + 3x = 0\)[/tex]

So, you are left with:

[tex]\[ x^2 - 9 \][/tex]

Therefore, the product of [tex]\((x+3)(x-3)\)[/tex] is:

[tex]\[ x^2 - 9 \][/tex]

Now, let's match our result with the given multiple-choice options:
- [tex]\(x^2 - 6x + 9\)[/tex]
- [tex]\(x^2 + 6x + 9\)[/tex]
- [tex]\(x^2 + 9\)[/tex]
- [tex]\(x^2 - 9\)[/tex]

The correct choice is:

[tex]\[ \boxed{x^2 - 9} \][/tex]