Use the Luminosity Distance Formula to find the distance to a star.

Given:
- Luminosity, [tex]L = 3.9 \times 10^{26}[/tex] watts
- Apparent brightness at Earth, [tex]2.0 \times 10^{-10}[/tex] watt/m²

Formula:
[tex]\[ \text{Apparent Brightness (AB)} = \frac{\text{Luminosity (L)}}{4 \pi r^2} \][/tex]

Calculate the distance [tex]\( r \)[/tex]:

A. [tex]3.939 \times 10^{17}[/tex] m
B. [tex]3.939 \times 10^{-17}[/tex] m
C. [tex]4.876 \times 10^{17}[/tex] m
D. [tex]4.876 \times 10^{-17}[/tex] m



Answer :

To determine the distance [tex]\( r \)[/tex] to the star given its luminosity [tex]\( L \)[/tex] and its apparent brightness [tex]\( AB \)[/tex], we can use the Luminosity Distance Formula. The formula relates the apparent brightness ([tex]\( AB \)[/tex]), the intrinsic luminosity ([tex]\( L \)[/tex]), and the distance to the star ([tex]\( r \)[/tex]):

[tex]\[ AB = \frac{L}{4 \pi r^2} \][/tex]

Given data:
- Luminosity, [tex]\( L = 3.9 \times 10^{26} \)[/tex] watts
- Apparent brightness, [tex]\( AB = 2.0 \times 10^{-10} \)[/tex] watt/m[tex]\(^2\)[/tex]

We need to solve for the distance [tex]\( r \)[/tex]. Rearrange the formula to isolate [tex]\( r \)[/tex]:

[tex]\[ r = \sqrt{ \frac{L}{4 \pi AB} } \][/tex]

1. Plug in the given values:
[tex]\[ L = 3.9 \times 10^{26} \][/tex]
[tex]\[ AB = 2.0 \times 10^{-10} \][/tex]

2. Substitute these values into the formula:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{4 \pi \times 2.0 \times 10^{-10}} } \][/tex]

3. Calculate the denominator:
[tex]\[ 4 \pi \times 2.0 = 8 \pi \][/tex]

4. Now the expression under the square root is:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{8 \pi \times 10^{-10}} } \][/tex]

5. Perform the division inside the square root:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \][/tex] (using [tex]\( \pi \approx 3.14159 \)[/tex])

6. Simplify the expression:
[tex]\[ r = \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{ \frac{3.9 \times 10^{26}}{25.1327412287 \times 10^{-10}} } \approx \sqrt{1.55185328066 \times 10^{36}} \][/tex]

7. Simplify the square root:
[tex]\[ r \approx \sqrt{1.55185328066 \times 10^{36}} \approx 3.93923938742745 \times 10^{17} \][/tex]

Therefore, the distance to the star [tex]\( r \)[/tex] is approximately [tex]\( 3.939 \times 10^{17} \)[/tex] meters, which matches one of the provided options.

So, the correct distance to the star is:
[tex]\[ 3.939 \times 10^{17} \, \text{m} \][/tex]