The function [tex]$f(x)=6x+8$[/tex] represents the distance run by a cheetah in miles. The function [tex]$g(x)=x-2$[/tex] represents the time the cheetah ran in hours.

Solve [tex]\left(\frac{f}{g}\right)(3)[/tex], and interpret the answer.

A. 26; the cheetah's rate in miles per hour
B. 26; the number of cheetahs
C. [tex]\frac{1}{26}[/tex]; the cheetah's rate in miles per hour
D. [tex]\frac{1}{26}[/tex]; the number of cheetahs



Answer :

To solve [tex]\(\left(\frac{f}{g}\right)(3)\)[/tex] and interpret the answer, let's follow these detailed steps:

1. Evaluate [tex]\(f(3)\)[/tex]:
We start by calculating [tex]\(f(x)\)[/tex] when [tex]\(x = 3\)[/tex]. The function [tex]\(f(x)\)[/tex] is given by:
[tex]\[ f(x) = 6x + 8 \][/tex]
Plugging in [tex]\(x = 3\)[/tex]:
[tex]\[ f(3) = 6(3) + 8 = 18 + 8 = 26 \][/tex]

2. Evaluate [tex]\(g(3)\)[/tex]:
Next, we calculate [tex]\(g(x)\)[/tex] when [tex]\(x = 3\)[/tex]. The function [tex]\(g(x)\)[/tex] is given by:
[tex]\[ g(x) = x - 2 \][/tex]
Plugging in [tex]\(x = 3\)[/tex]:
[tex]\[ g(3) = 3 - 2 = 1 \][/tex]

3. Calculate [tex]\(\left(\frac{f}{g}\right)(3)\)[/tex]:
Now we find the value of [tex]\(\frac{f(3)}{g(3)}\)[/tex]:
[tex]\[ \left(\frac{f}{g}\right)(3) = \frac{f(3)}{g(3)} = \frac{26}{1} = 26 \][/tex]

4. Interpret the answer:
The result of [tex]\(\left(\frac{f}{g}\right)(3) = 26\)[/tex] represents the rate at which the cheetah is running. Since [tex]\(f(x)\)[/tex] represents the distance run by the cheetah in miles and [tex]\(g(x)\)[/tex] represents the time in hours, the value [tex]\(26\)[/tex] is the cheetah's speed in miles per hour.

Therefore, the correct interpretation is:

- 26; the cheetah's rate in miles per hour

So, the answer is:
[tex]\[ \boxed{26; \text{the cheetah's rate in miles per hour}} \][/tex]