Use the Luminosity Distance Formula.

You measure the apparent brightness of a particular star to be [tex]2.5 \times 10^{-10} \, \text{watt/m}^2[/tex]. A parallax measurement shows the star's distance to be 42 light-years or about [tex]4 \times 10^{17}[/tex] meters. What is the star's luminosity?

Formula: Apparent Brightness (AB) = Luminosity / [tex]4 \pi r^2[/tex]

A. [tex]4.323 \times 10^{-26}[/tex] watts
B. [tex]5.027 \times 10^{-26}[/tex] watts
C. [tex]4.323 \times 10^{26}[/tex] watts
D. [tex]5.027 \times 10^{26}[/tex] watts



Answer :

To determine the star's luminosity given its apparent brightness and distance, we use the Luminosity Distance Formula:

[tex]\[ \text{Apparent Brightness (AB)} = \frac{\text{Luminosity (L)}}{4 \pi r^2} \][/tex]

Here, the apparent brightness (AB) is [tex]\(2.5 \times 10^{-10} \, \text{watt/m}^2\)[/tex] and the distance (r) is [tex]\(4 \times 10^{17} \, \text{meters}\)[/tex].

We need to solve for Luminosity (L):

1. Rearrange the formula to solve for luminosity (L):
[tex]\[ L = \text{AB} \times 4 \pi r^2 \][/tex]

2. Substitute the given values into the formula:
[tex]\[ L = \left(2.5 \times 10^{-10} \, \text{watt/m}^2\right) \times 4 \pi \left(4 \times 10^{17} \, \text{meters}\right)^2 \][/tex]

3. Calculate the distance squared:
[tex]\[ (4 \times 10^{17})^2 = 16 \times 10^{34} = 1.6 \times 10^{35} \][/tex]

4. Multiply this result by [tex]\(4 \pi\)[/tex]:
[tex]\[ 4 \pi \times 1.6 \times 10^{35} \][/tex]
Using [tex]\(\pi \approx 3.1416\)[/tex]:
[tex]\[ 4 \times 3.1416 \times 1.6 \times 10^{35} \approx 20.106 \times 10^{35} \][/tex]

5. Now multiply by the apparent brightness:
[tex]\[ L = 2.5 \times 10^{-10} \times 20.106 \times 10^{35} \][/tex]

6. Combine the factors:
[tex]\[ L = 2.5 \times 20.106 \times 10^{25} \][/tex]
[tex]\[ L \approx 50.265 \times 10^{25} = 5.0265 \times 10^{26} \][/tex]

After rounding, the calculated luminosity is approximately [tex]\(5.027 \times 10^{26} \, \text{watts}\)[/tex].

Among the options provided:
- [tex]\(4.323 \times 10^{-26} \, \text{watts}\)[/tex]
- [tex]\(5.027 \times 10^{-26} \, \text{watts}\)[/tex]
- [tex]\(4.323 \times 10^{26} \, \text{watts}\)[/tex]
- [tex]\(5.027 \times 10^{26} \, \text{watts}\)[/tex]

The correct option is:
[tex]\[ \boxed{5.027 \times 10^{26} \, \text{watts}} \][/tex]