Answer :
To solve the problem of determining the number of price increases [tex]\( x \)[/tex] the theater company can make while still achieving a revenue of \[tex]$1,700, follow these steps:
1. Identify the current price and sales:
- Current ticket price: \$[/tex]8.50
- Current sales: 200 tickets
2. Express the new price and sales with respect to the number of [tex]\( \$0.25 \)[/tex] increases [tex]\( x \)[/tex]:
- New ticket price: [tex]\( 8.50 + 0.25x \)[/tex]
- Decrease in sales: [tex]\( 5x \)[/tex]
- New sales: [tex]\( 200 - 5x \)[/tex]
3. Write the revenue formula with the new price and sales:
Revenue = (New ticket price) [tex]\(\times\)[/tex] (New sales)
= [tex]\((8.50 + 0.25x) \times (200 - 5x)\)[/tex]
4. Set the revenue formula equal to the target revenue of \$1700 to form an equation:
[tex]\[ (8.50 + 0.25x) \times (200 - 5x) = 1700 \][/tex]
5. Expand and simplify the equation:
[tex]\[ (8.50 + 0.25x) \times (200 - 5x) = 1700 \][/tex]
First, expand the left-hand side:
[tex]\[ 8.50 \times 200 + 8.50 \times (-5x) + 0.25x \times 200 + 0.25x \times (-5x) \][/tex]
Simplify each term:
[tex]\[ 1700 - 42.5x + 50x - 1.25x^2 \][/tex]
Combine like terms:
[tex]\[ 1700 + 7.5x - 1.25x^2 \][/tex]
Set the equation to be equal to the target revenue:
[tex]\[ 1700 + 7.5x - 1.25x^2 = 1700 \][/tex]
6. Subtract 1700 from both sides to obtain a standard quadratic equation form:
[tex]\[ 0 = -1.25x^2 + 7.5x \][/tex]
By following these steps, we get the equation:
[tex]\[ -1.25x^2 + 7.5x - 1700 = 0 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{B. \ -1.25 x^2 + 7.5 x - 1,700 = 0} \][/tex]
- Current sales: 200 tickets
2. Express the new price and sales with respect to the number of [tex]\( \$0.25 \)[/tex] increases [tex]\( x \)[/tex]:
- New ticket price: [tex]\( 8.50 + 0.25x \)[/tex]
- Decrease in sales: [tex]\( 5x \)[/tex]
- New sales: [tex]\( 200 - 5x \)[/tex]
3. Write the revenue formula with the new price and sales:
Revenue = (New ticket price) [tex]\(\times\)[/tex] (New sales)
= [tex]\((8.50 + 0.25x) \times (200 - 5x)\)[/tex]
4. Set the revenue formula equal to the target revenue of \$1700 to form an equation:
[tex]\[ (8.50 + 0.25x) \times (200 - 5x) = 1700 \][/tex]
5. Expand and simplify the equation:
[tex]\[ (8.50 + 0.25x) \times (200 - 5x) = 1700 \][/tex]
First, expand the left-hand side:
[tex]\[ 8.50 \times 200 + 8.50 \times (-5x) + 0.25x \times 200 + 0.25x \times (-5x) \][/tex]
Simplify each term:
[tex]\[ 1700 - 42.5x + 50x - 1.25x^2 \][/tex]
Combine like terms:
[tex]\[ 1700 + 7.5x - 1.25x^2 \][/tex]
Set the equation to be equal to the target revenue:
[tex]\[ 1700 + 7.5x - 1.25x^2 = 1700 \][/tex]
6. Subtract 1700 from both sides to obtain a standard quadratic equation form:
[tex]\[ 0 = -1.25x^2 + 7.5x \][/tex]
By following these steps, we get the equation:
[tex]\[ -1.25x^2 + 7.5x - 1700 = 0 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{B. \ -1.25 x^2 + 7.5 x - 1,700 = 0} \][/tex]