Tarea: Resolver las siguientes multiplicaciones

[tex]\[
\begin{array}{ll}
1. & (-3a) \cdot a^2 \\
2. & (3x^2) \cdot (-x^3) \\
3. & (-m^2 n) \cdot (-3x^2) \\
4. & (-5a^3 y^2) \cdot (ay^2) \\
5. & (-2ab) \cdot (-3a^2 b^3) \\
6. & \left(\frac{1}{2} x^3\right) \cdot \left(-\frac{2}{3} a^2 x\right) \\
7. & \left(-\frac{2}{3} a^5\right) \cdot \left(\frac{1}{4} a^2 b^4\right) \\
8. & \left(-\frac{3}{5} m^2\right) \cdot (-6a^2 m) \\
9. & \left(-\frac{1}{2} x^2 y\right) \cdot \left(-\frac{1}{2} x y^2\right) \\
10. & \left(-\frac{10}{3} x^3\right) \cdot \left(-\frac{3}{4} x^2 y\right)
\end{array}
\][/tex]



Answer :

¡Claro! Vamos a resolver cada multiplicación detalladamente.

1. [tex]$(-3a) \cdot \left(a^2\right)$[/tex]

[tex]\[ (-3a) \cdot \left(a^2\right) = -3 \cdot a \cdot a^2 = -3a^3 \][/tex]

Cuando [tex]\(a = 1\)[/tex]:

[tex]\[ -3 \cdot 1^3 = -3 \][/tex]

2. [tex]$\left(3x^2\right) \cdot \left(-4x^3\right)$[/tex]

[tex]\[ 3x^2 \cdot (-4x^3) = 3 \cdot (-4) \cdot x^2 \cdot x^3 = -12x^5 \][/tex]

Cuando [tex]\(x = 1\)[/tex]:

[tex]\[ -12 \cdot 1^5 = -12 \][/tex]

3. [tex]$\left(-m^2n\right) \cdot \left(-3x^2\right)$[/tex]

[tex]\[ (-m^2n) \cdot (-3x^2) = (-1) \cdot m^2 \cdot n \cdot (-3) \cdot x^2 = 3m^2nx^2 \][/tex]

Cuando [tex]\(m = 1, n = 1, x = 1\)[/tex]:

[tex]\[ 3 \cdot 1^2 \cdot 1 \cdot 1^2 = 3 \][/tex]

4. [tex]$\left(-5a^3y^2\right) \cdot \left(ay^2\right)$[/tex]

[tex]\[ -5a^3y^2 \cdot ay^2 = -5 \cdot a^3 \cdot a \cdot y^2 \cdot y^2 = -5a^4y^4 \][/tex]

Cuando [tex]\(a = 1, y = 1\)[/tex]:

[tex]\[ -5 \cdot 1^4 \cdot 1^4 = -5 \][/tex]

5. [tex]$(-2ab) \cdot \left(-3a^2b^3\right)$[/tex]

[tex]\[ (-2ab) \cdot (-3a^2b^3) = -2 \cdot -3 \cdot a \cdot b \cdot a^2 \cdot b^3 = 6a^3b^4 \][/tex]

Cuando [tex]\(a = 1, b = 1\)[/tex]:

[tex]\[ 6 \cdot 1^3 \cdot 1^4 = 6 \][/tex]

6. [tex]$\left(\frac{1}{2}x^3\right) \cdot \left(-\frac{2}{3}a^2x\right)$[/tex]

[tex]\[ \left(\frac{1}{2}x^3\right) \cdot \left(-\frac{2}{3}a^2x\right) = \frac{1}{2} \cdot -\frac{2}{3} \cdot x^3 \cdot a^2 \cdot x = -\frac{2}{6}a^2x^4 = -\frac{1}{3}a^2x^4 \][/tex]

Cuando [tex]\(a = 1, x = 1\)[/tex]:

[tex]\[ -\frac{1}{3} \cdot 1^2 \cdot 1^4 = -\frac{1}{3} \][/tex]

7. [tex]$\left(-\frac{2}{3}a^5\right) \cdot \left(\frac{2}{4}a^2b^4\right)$[/tex]

[tex]\[ -\frac{2}{3}a^5 \cdot \frac{2}{4}a^2b^4 = -\frac{2}{3} \cdot \frac{2}{4} \cdot a^5 \cdot a^2 \cdot b^4 = -\frac{4}{12}a^7b^4 = -\frac{1}{3}a^7b^4 \][/tex]

Cuando [tex]\(a = 1, b = 1\)[/tex]:

[tex]\[ -\frac{1}{3} \cdot 1^7 \cdot 1^4 = -\frac{1}{3} \][/tex]

8. [tex]$\left(-\frac{3}{5}m^2\right) \cdot \left(-6a^2m\right)$[/tex]

[tex]\[ -\frac{3}{5}m^2 \cdot -6a^2m = -\frac{3}{5} \cdot -6 \cdot m^2 \cdot a^2 \cdot m = \frac{18}{5}m^3a^2 \][/tex]

Cuando [tex]\(m = 1, a = 1\)[/tex]:

[tex]\[ \frac{18}{5} \cdot 1^3 \cdot 1^2 = 3.6 \][/tex]

9. [tex]$\left(-\frac{1}{2}x^2y\right) \cdot \left(-\frac{3}{6}xy^2\right)$[/tex]

[tex]\[ -\frac{1}{2}x^2y \cdot -\frac{3}{6}xy^2 = -\frac{1}{2} \cdot -\frac{3}{6} \cdot x^2 \cdot x \cdot y \cdot y^2 = \frac{3}{12}x^3y^3 = \frac{1}{4}x^3y^3 \][/tex]

Cuando [tex]\(x = 1, y = 1\)[/tex]:

[tex]\[ \frac{1}{4} \cdot 1^3 \cdot 1^3 = \frac{1}{4} \][/tex]

10. [tex]$\left(-\frac{10}{3}x^3\right) \cdot \left(-\frac{3}{4}x^2y\right)$[/tex]

[tex]\[ -\frac{10}{3}x^3 \cdot -\frac{3}{4}x^2y = -\frac{10}{3} \cdot -\frac{3}{4} \cdot x^3 \cdot x^2 \cdot y = \frac{30}{12}x^5y = \frac{5}{2}x^5y \][/tex]

Cuando [tex]\(x = 1, y = 1\)[/tex]:

[tex]\[ \frac{5}{2} \cdot 1^5 \cdot 1 = \frac{5}{2} = 2.5 \][/tex]

Resumiendo los resultados finales para [tex]\(a = 1, x = 1, m = 1, n = 1, y = 1, b = 1\)[/tex]:

1. [tex]\(-3\)[/tex]
2. [tex]\(-12\)[/tex]
3. [tex]\(3\)[/tex]
4. [tex]\(-5\)[/tex]
5. [tex]\(6\)[/tex]
6. [tex]\(-\frac{1}{3}\)[/tex]
7. [tex]\(-\frac{1}{3}\)[/tex]
8. [tex]\(3.6\)[/tex]
9. [tex]\(\frac{1}{4}\)[/tex]
10. [tex]\(2.5\)[/tex]