Answer :

To solve this problem, let's step through the sequence using the given recurrence relation and the initial term.

1. We are given the initial term [tex]\( u_1 = -2 \)[/tex].

2. To find [tex]\( u_2 \)[/tex]:
[tex]\[ u_2 = 3 \cdot u_1 + 7 \][/tex]
Plugging in the value of [tex]\( u_1 \)[/tex]:
[tex]\[ u_2 = 3 \cdot (-2) + 7 = -6 + 7 = 1 \][/tex]

3. Next, we determine [tex]\( u_3 \)[/tex]:
[tex]\[ u_3 = 3 \cdot u_2 + 7 \][/tex]
Using the value found for [tex]\( u_2 \)[/tex]:
[tex]\[ u_3 = 3 \cdot 1 + 7 = 3 + 7 = 10 \][/tex]

Thus, the values are:
[tex]\[ u_2 = 1, \quad u_3 = 10 \][/tex]