Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar.

Complete the table of inputs and outputs for the given function.

[tex]\[ g(x) = -4x - 1 \][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$g(x)$[/tex] \\
\hline
[tex]$\square$[/tex] & 7 \\
\hline
0 & [tex]$\square$[/tex] \\
\hline
[tex]$\square$[/tex] & -13 \\
\hline
-1 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

Let's complete the table step by step.

1. To find [tex]\( x \)[/tex] when [tex]\( g(x) = 7 \)[/tex]:
Given the function [tex]\( g(x) = -4x - 1 \)[/tex], set [tex]\( g(x) = 7 \)[/tex]:
[tex]\[ 7 = -4x - 1 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 7 + 1 = -4x \implies 8 = -4x \implies x = \frac{8}{-4} \implies x = -2 \][/tex]

2. To find [tex]\( g(x) \)[/tex] when [tex]\( x = 0 \)[/tex]:
Substitute [tex]\( x = 0 \)[/tex] into [tex]\( g(x) = -4x - 1 \)[/tex]:
[tex]\[ g(0) = -4(0) - 1 = 0 - 1 = -1 \][/tex]

3. To find [tex]\( x \)[/tex] when [tex]\( g(x) = -13 \)[/tex]:
Given the function [tex]\( g(x) = -4x - 1 \)[/tex], set [tex]\( g(x) = -13 \)[/tex]:
[tex]\[ -13 = -4x - 1 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ -13 + 1 = -4x \implies -12 = -4x \implies x = \frac{-12}{-4} \implies x = 3 \][/tex]

4. To find [tex]\( g(x) \)[/tex] when [tex]\( x = -1 \)[/tex]:
Substitute [tex]\( x = -1 \)[/tex] into [tex]\( g(x) = -4x - 1 \)[/tex]:
[tex]\[ g(-1) = -4(-1) - 1 = 4 - 1 = 3 \][/tex]

Now, we can complete the table as follows:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $g(x)$ \\ \hline -2 & 7 \\ \hline 0 & -1 \\ \hline 3 & -13 \\ \hline -1 & 3 \\ \hline \end{tabular} \][/tex]