Answer :

To determine the values of [tex]\( k \)[/tex] for which the quadratic equation [tex]\( x^2 - 4x + k =0 \)[/tex] has a double root, we need to analyze the condition for a double root.

For a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex] to have a double root, the discriminant must be zero. The discriminant [tex]\(\Delta\)[/tex] is given by the formula:

[tex]\[ \Delta = b^2 - 4ac \][/tex]

In the given equation [tex]\( x^2 - 4x + k = 0 \)[/tex], we identify the coefficients as:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -4 \)[/tex]
- [tex]\( c = k \)[/tex]

Next, we substitute these values into the discriminant formula:

[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot k \][/tex]

Simplifying the expression, we get:

[tex]\[ \Delta = 16 - 4k \][/tex]

For the equation to have a double root, the discriminant must be zero:

[tex]\[ 16 - 4k = 0 \][/tex]

We solve for [tex]\( k \)[/tex]:

[tex]\[ 16 = 4k \][/tex]

[tex]\[ k = \frac{16}{4} \][/tex]

[tex]\[ k = 4 \][/tex]

Therefore, the value of [tex]\( k \)[/tex] for which the equation [tex]\( x^2 - 4x + k = 0 \)[/tex] has a double root is [tex]\( k = 4 \)[/tex].

Finally, the discriminant and the value of [tex]\( k \)[/tex] can be summarized as:
[tex]\[ \Delta = 16 - 4k \][/tex]
[tex]\[ k = 4 \][/tex]

Other Questions