Which values are solutions to the inequality below? Check all that apply.

[tex]\[ \sqrt{x} \ \textless \ 10 \][/tex]

A. 9
B. 36
C. 105
D. 25
E. -100
F. 100



Answer :

To solve the inequality [tex]\(\sqrt{x} < 10\)[/tex], we need to determine which values of [tex]\(x\)[/tex] satisfy this condition. Let's examine each option provided:

1. [tex]\(x = 9\)[/tex]:
- Calculate the square root of 9:
[tex]\[ \sqrt{9} = 3 \][/tex]
- Check if [tex]\(3 < 10\)[/tex]:
[tex]\[ 3 < 10 \quad \text{(True)} \][/tex]
- Hence, 9 is a solution.

2. [tex]\(x = 36\)[/tex]:
- Calculate the square root of 36:
[tex]\[ \sqrt{36} = 6 \][/tex]
- Check if [tex]\(6 < 10\)[/tex]:
[tex]\[ 6 < 10 \quad \text{(True)} \][/tex]
- Hence, 36 is a solution.

3. [tex]\(x = 105\)[/tex]:
- Calculate the square root of 105:
[tex]\[ \sqrt{105} \approx 10.25 \][/tex]
- Check if [tex]\(10.25 < 10\)[/tex]:
[tex]\[ 10.25 < 10 \quad \text{(False)} \][/tex]
- Hence, 105 is not a solution.

4. [tex]\(x = 25\)[/tex]:
- Calculate the square root of 25:
[tex]\[ \sqrt{25} = 5 \][/tex]
- Check if [tex]\(5 < 10\)[/tex]:
[tex]\[ 5 < 10 \quad \text{(True)} \][/tex]
- Hence, 25 is a solution.

5. [tex]\(x = -100\)[/tex]:
- The square root of a negative number is not a real number, so:
[tex]\[ \sqrt{-100} \quad \text{(Not Defined in the Real Number System)} \][/tex]
- Hence, -100 is not a solution.

6. [tex]\(x = 100\)[/tex]:
- Calculate the square root of 100:
[tex]\[ \sqrt{100} = 10 \][/tex]
- Check if [tex]\(10 < 10\)[/tex]:
[tex]\[ 10 < 10 \quad \text{(False)} \][/tex]
- Hence, 100 is not a solution.

The values that satisfy the inequality [tex]\(\sqrt{x} < 10\)[/tex] are:
- 9
- 36
- 25

Therefore, the correct answers are:
A. 9
B. 36
D. 25