Question 23 (1 point)

The sum of the measures of the interior angles of an octagon is:

a) [tex]$720^{\circ}$[/tex]
b) [tex]$900^{\circ}$[/tex]
c) [tex][tex]$1,080^{\circ}$[/tex][/tex]
d) [tex]$1,260^{\circ}$[/tex]



Answer :

To find the sum of the measures of the interior angles of an octagon, we use the formula for the sum of the interior angles of a polygon, which is given by:

[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]

where [tex]\( n \)[/tex] is the number of sides of the polygon.

For an octagon, [tex]\( n = 8 \)[/tex].

Now, let's substitute [tex]\( n = 8 \)[/tex] into the formula:

[tex]\[ \text{Sum of interior angles} = (8 - 2) \times 180^\circ \][/tex]

[tex]\[ \text{Sum of interior angles} = 6 \times 180^\circ \][/tex]

[tex]\[ \text{Sum of interior angles} = 1080^\circ \][/tex]

Therefore, the sum of the measures of the interior angles of an octagon is [tex]\( 1,080^\circ \)[/tex]. The correct answer is:

c) [tex]\( 1,080^{\circ} \)[/tex]