Given that [tex]$\frac{1}{5}\ \textless \ \frac{1}{y}\ \textless \ \frac{1}{3}$[/tex], find all possible values of the expression [tex]5-2y[/tex].

Answer: [tex]\square \ \textless \ 5 - 2y \ \textless \ \square[/tex]

To enter a repeating decimal or fraction, use one of the following forms:
- [tex]\frac{1}{3}[/tex] or [tex]0.\overline{3}[/tex] or [tex]0.(3)[/tex]



Answer :

To solve the problem given [tex]\(\frac{1}{5} < \frac{1}{y} < \frac{1}{3}\)[/tex], we need to find the corresponding range for the expression [tex]\(5 - 2y\)[/tex].

Step 1: Understand the inequality [tex]\(\frac{1}{5} < \frac{1}{y} < \frac{1}{3}\)[/tex]

First, let's rewrite the inequality to isolate [tex]\(y\)[/tex]:
- Since [tex]\(\frac{1}{y}\)[/tex] is between [tex]\(\frac{1}{5}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex], we need to invert these fractions. Remember that when you invert an inequality with fractions, the inequality signs flip because the function [tex]\(f(y) = \frac{1}{y}\)[/tex] is a decreasing function.

Inverted, the inequality becomes:
[tex]\[ 5 > y > 3 \][/tex]

So, the range of [tex]\(y\)[/tex] is:
[tex]\[ 3 < y < 5 \][/tex]

Step 2: Finding the range for [tex]\(5 - 2y\)[/tex]

Now, we need to substitute the bounds of [tex]\(y\)[/tex] into the expression [tex]\(5 - 2y\)[/tex] to find its range.

1. Evaluate the expression at the lower bound [tex]\(y = 3\)[/tex]:
[tex]\[ 5 - 2 \times 3 = 5 - 6 = -1 \][/tex]

2. Evaluate the expression at the upper bound [tex]\(y = 5\)[/tex]:
[tex]\[ 5 - 2 \times 5 = 5 - 10 = -5 \][/tex]

Step 3: Combine the results

The expression [tex]\(5 - 2y\)[/tex] will vary between these two results, as [tex]\(y\)[/tex] varies from 3 to 5. Therefore:

[tex]\[ -5 < 5 - 2y < -1 \][/tex]

Summary
The possible values of the expression [tex]\(5 - 2y\)[/tex] are in the range:

[tex]\[ \boxed{-5 < 5 - 2y < -1} \][/tex]