Answer :

Alright, let's solve the equation step by step.

Given the equation:

[tex]\[ \frac{9}{x-3} - \frac{27}{x^2 - 3x} = -3 \][/tex]

First, we need to simplify the second term [tex]\(\frac{27}{x^2 - 3x}\)[/tex]. Notice that the denominator [tex]\(x^2 - 3x\)[/tex] can be factored:

[tex]\[ x^2 - 3x = x(x - 3) \][/tex]

So the equation becomes:

[tex]\[ \frac{9}{x-3} - \frac{27}{x(x-3)} = -3 \][/tex]

Next, we find a common denominator for the fractions on the left side of the equation. The common denominator will be [tex]\(x(x-3)\)[/tex]:

[tex]\[ \frac{9x}{x(x-3)} - \frac{27}{x(x-3)} = -3 \][/tex]

Combine the fractions:

[tex]\[ \frac{9x - 27}{x(x-3)} = -3 \][/tex]

To clear the fraction, multiply both sides of the equation by [tex]\(x(x-3)\)[/tex]:

[tex]\[ 9x - 27 = -3x(x-3) \][/tex]

Expand the right-hand side:

[tex]\[ 9x - 27 = -3x^2 + 9x \][/tex]

Subtract [tex]\(9x\)[/tex] from both sides:

[tex]\[ -27 = -3x^2 \][/tex]

Divide both sides by [tex]\(-3\)[/tex]:

[tex]\[ 9 = x^2 \][/tex]

Take the square root of both sides:

[tex]\[ x = \pm 3 \][/tex]

Now we need to check if these solutions are valid in the context of the original equation. We substitute [tex]\(x = 3\)[/tex] and [tex]\(x = -3\)[/tex] back into the original equation:

For [tex]\(x = 3\)[/tex]:

[tex]\[ \frac{9}{3-3} - \frac{27}{3^2-3 \cdot 3} = \frac{9}{0} - \frac{27}{0} \][/tex]

This results in division by zero, which is undefined. Therefore, [tex]\(x = 3\)[/tex] is not a valid solution.

For [tex]\(x = -3\)[/tex]:

[tex]\[ \frac{9}{-3-3} - \frac{27}{(-3)^2 - 3 \cdot (-3)} = \frac{9}{-6} - \frac{27}{9 + 9} = -\frac{3}{2} - \frac{27}{18} = -\frac{3}{2} - \frac{3}{2} = -3 \][/tex]

This satisfies the original equation. Therefore, the valid solution is:

[tex]\[ x = -3 \][/tex]