Consider the function below.

[tex]\[ f(x) = 18x^2 + 30x + 2 \][/tex]

Find the value of [tex]\[ f\left(\frac{1}{3}\right) \][/tex].

Answer:

[tex]\[ f\left(\frac{1}{3}\right) = 1 \][/tex]



Answer :

Sure, let's find the value of [tex]\( f\left(\frac{1}{3}\right) \)[/tex] for the function [tex]\( f(x) = 18x^2 + 30x + 2 \)[/tex].

1. Substitute [tex]\( x = \frac{1}{3} \)[/tex] into the function:

[tex]\[ f\left(\frac{1}{3}\right) = 18 \left(\frac{1}{3}\right)^2 + 30 \left(\frac{1}{3}\right) + 2 \][/tex]

2. Calculate [tex]\( \left(\frac{1}{3}\right)^2 \)[/tex]:

[tex]\[ \left(\frac{1}{3}\right)^2 = \frac{1}{9} \][/tex]

3. Multiply 18 by [tex]\( \frac{1}{9} \)[/tex]:

[tex]\[ 18 \times \frac{1}{9} = 2 \][/tex]

4. Multiply 30 by [tex]\( \frac{1}{3} \)[/tex]:

[tex]\[ 30 \times \frac{1}{3} = 10 \][/tex]

5. Add the results together:

[tex]\[ f\left(\frac{1}{3}\right) = 2 + 10 + 2 \][/tex]

[tex]\[ f\left(\frac{1}{3}\right) = 14 \][/tex]

So, the value of [tex]\( f\left(\frac{1}{3}\right) \)[/tex] is:

[tex]\[ f\left(\frac{1}{3}\right) = 14 \][/tex]