What is the solution to the inequality [tex]|2x-3|\ \textgreater \ 5[/tex]?

A. [tex]x\ \textless \ -1[/tex] or [tex]x\ \textgreater \ 4[/tex]
B. [tex]x\ \textless \ 0[/tex] or [tex]x\ \textgreater \ 8[/tex]
C. [tex]0\ \textless \ x\ \textless \ 8[/tex]
D. [tex]-1\ \textless \ x\ \textless \ 4[/tex]



Answer :

To solve the inequality [tex]\( |2x - 3| > 5 \)[/tex], we need to break it into two separate inequalities based on the properties of the absolute value function.

The absolute value inequality [tex]\( |2x - 3| > 5 \)[/tex] can be split into two cases:
1. [tex]\( 2x - 3 > 5 \)[/tex]
2. [tex]\( 2x - 3 < -5 \)[/tex]

Let's solve these two inequalities one by one.

### Case 1: [tex]\( 2x - 3 > 5 \)[/tex]

1. Start by isolating [tex]\( x \)[/tex].
[tex]\[ 2x - 3 > 5 \][/tex]
2. Add 3 to both sides.
[tex]\[ 2x > 8 \][/tex]
3. Divide both sides by 2.
[tex]\[ x > 4 \][/tex]

So, the solution for the first inequality is [tex]\( x > 4 \)[/tex].

### Case 2: [tex]\( 2x - 3 < -5 \)[/tex]

1. Start by isolating [tex]\( x \)[/tex].
[tex]\[ 2x - 3 < -5 \][/tex]
2. Add 3 to both sides.
[tex]\[ 2x < -2 \][/tex]
3. Divide both sides by 2.
[tex]\[ x < -1 \][/tex]

So, the solution for the second inequality is [tex]\( x < -1 \)[/tex].

### Combining Both Cases

The combined solution to the inequality [tex]\( |2x - 3| > 5 \)[/tex] is:
[tex]\[ x < -1 \quad \text{or} \quad x > 4 \][/tex]

Thus, the correct answer is:
[tex]\[ x < -1 \quad \text{or} \quad x > 4 \][/tex]

Therefore, among the given choices, the correct one is:

[tex]\[ \boxed{x < -1 \quad \text{or} \quad x > 4} \][/tex]