Select the correct answer.

Simplify the following expression:
[tex]\[ 3^{\frac{11}{5}} \div 3^{-\frac{9}{5}} \][/tex]

A. 81
B. [tex]\(\frac{1}{12}\)[/tex]
C. [tex]\(\frac{1}{81}\)[/tex]
D. 12



Answer :

To simplify the expression [tex]\( 3^{\frac{11}{5}} \div 3^{-\frac{9}{5}} \)[/tex], follow these steps:

1. Review Properties of Exponents:
Remember the property of exponents: [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]. This property will help simplify the division of two exponents with the same base.

2. Combine Exponents Using the Property:
Here, the expression can be rewritten with the exponents subtracted:
[tex]\[ 3^{\frac{11}{5}} \div 3^{-\frac{9}{5}} = 3^{\left(\frac{11}{5} - \left(-\frac{9}{5}\right)\right)} \][/tex]

Simplify the exponent:
[tex]\[ \frac{11}{5} - \left(-\frac{9}{5}\right) = \frac{11}{5} + \frac{9}{5} \][/tex]

Add the exponents:
[tex]\[ \frac{11}{5} + \frac{9}{5} = \frac{20}{5} = 4 \][/tex]

3. Simplify the Base:
Now the expression simplifies to:
[tex]\[ 3^4 \][/tex]

4. Calculate the Final Value:
Finally, calculate [tex]\(3^4\)[/tex]:
[tex]\[ 3^4 = 81 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{81} \][/tex]