Given [tex]$f(x)=\sqrt[3]{4x+3}$[/tex], find [tex][tex]$f(3.2)$[/tex][/tex]. Your answer should be written in decimal notation, rounded to 4 decimal places.

[tex]f(3.2) = \square[/tex]



Answer :

To find [tex]\( f(3.2) \)[/tex] for the function [tex]\( f(x) = \sqrt[3]{4x + 3} \)[/tex], we will follow these steps:

1. Substitute [tex]\( x = 3.2 \)[/tex] into the function [tex]\( f(x) \)[/tex].

2. Calculate the expression inside the cube root.

3. Evaluate the cube root.

4. Round the final result to 4 decimal places.

Let’s go through each of these steps in detail:

### Step 1: Substitute [tex]\( x = 3.2 \)[/tex]
[tex]\[ f(3.2) = \sqrt[3]{4 \cdot 3.2 + 3} \][/tex]

### Step 2: Calculate the expression inside the cube root
First, we need to calculate [tex]\( 4 \cdot 3.2 \)[/tex]:
[tex]\[ 4 \cdot 3.2 = 12.8 \][/tex]

Next, add 3 to this result:
[tex]\[ 12.8 + 3 = 15.8 \][/tex]

So the expression inside the cube root becomes [tex]\( 15.8 \)[/tex].

### Step 3: Evaluate the cube root
Now, we need to compute the cube root of [tex]\( 15.8 \)[/tex]:
[tex]\[ \sqrt[3]{15.8} \][/tex]

### Step 4: Round the final result to 4 decimal places
After calculating [tex]\( \sqrt[3]{15.8} \)[/tex], the result is approximately 2.5093 when rounded to 4 decimal places.

Therefore, the value of [tex]\( f(3.2) \)[/tex] is:
[tex]\[ f(3.2) \approx 2.5093 \][/tex]