Listed below are the lead concentrations in [tex]$\mu g / g$[/tex] measured in different traditional medicines. Use a 0.10 significance level to test the claim that the mean lead concentration for all such medicines is less than [tex]$13 \mu g / g$[/tex].

Assume that the sample is a simple random sample.
[tex]\[
\begin{array}{l}
18.588, 0.54, 0.59, 0.587, 0.518, 520.5
\end{array}
\][/tex]

Assuming all conditions for conducting a hypothesis test are met, what are the null and alternative hypotheses?
[tex]\[
\begin{array}{l}
H_0: \mu = 13 \mu g / g \\
H_1: \mu \ \textless \ 13 \mu g / g
\end{array}
\][/tex]

A. [tex]$H_0: \mu = 13 \mu g / g$[/tex], [tex]$H_1: \mu \neq 13 \mu g / g$[/tex]

B. [tex]$H_0: \mu \neq 13 \mu g / g$[/tex], [tex]$H_1: \mu \ \textgreater \ 13 \mu g / g$[/tex]

C. [tex]$H_0: \mu = 13 \mu g / g$[/tex], [tex]$H_1: \mu \ \textless \ 13 \mu g / g$[/tex]



Answer :

To test the claim that the mean lead concentration for all such traditional medicines is less than [tex]\( 13 \, \mu \text{g} / \text{g} \)[/tex], we need to perform a hypothesis test. Here is the step-by-step solution:

### Step 1: Formulate Hypotheses

We define the null hypothesis ([tex]\( H_0 \)[/tex]) and the alternative hypothesis ([tex]\( H_1 \)[/tex]) as follows:

- Null Hypothesis ([tex]\( H_0 \)[/tex]): The mean lead concentration is [tex]\( 13 \, \mu \text{g} / \text{g} \)[/tex].
[tex]\[ H_0: \mu = 13 \, \mu \text{g} / \text{g} \][/tex]

- Alternative Hypothesis ([tex]\( H_1 \)[/tex]): The mean lead concentration is less than [tex]\( 13 \, \mu \text{g} / \text{g} \)[/tex].
[tex]\[ H_1: \mu < 13 \, \mu \text{g} / \text{g} \][/tex]

We will use a significance level ([tex]\( \alpha \)[/tex]) of 0.10.

### Step 2: Calculate the Test Statistic

The test statistic for a one-sample t-test is calculated using the formula:
[tex]\[ t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \][/tex]

Where:
- [tex]\( \bar{x} \)[/tex] is the sample mean.
- [tex]\( \mu_0 \)[/tex] is the claimed population mean.
- [tex]\( s \)[/tex] is the sample standard deviation.
- [tex]\( n \)[/tex] is the sample size.

Based on the numerical results:

- Sample mean ([tex]\( \bar{x} \)[/tex]): 3.789
- Sample standard deviation ([tex]\( s \)[/tex]): 6.752
- Sample size ([tex]\( n \)[/tex]): 7
- Claimed mean ([tex]\( \mu_0 \)[/tex]): 13

The calculated test statistic is:
[tex]\[ t = -3.609 \][/tex]

### Step 3: Determine the Critical Value

For a one-tailed test with a significance level of 0.10 and degrees of freedom [tex]\( df = n - 1 = 6 \)[/tex], we look up the critical t-value in the t-distribution table or compute it using statistical software. The critical t-value for [tex]\( \alpha = 0.10 \)[/tex] with 6 degrees of freedom is:
[tex]\[ t_{\text{critical}} = -1.440 \][/tex]

### Step 4: Calculate the P-value

The p-value associated with the calculated t-score can be found using the cumulative distribution function (CDF) of the t-distribution:
[tex]\[ \text{p-value} = 0.0056 \][/tex]

### Step 5: Make a Decision

We compare the p-value with the significance level ([tex]\( \alpha \)[/tex]):

- If the p-value is less than [tex]\( \alpha \)[/tex], we reject the null hypothesis.
- If the p-value is greater than or equal to [tex]\( \alpha \)[/tex], we do not reject the null hypothesis.

In this case:
[tex]\[ \text{p-value} = 0.0056 < 0.10 \][/tex]

Since the p-value is less than the significance level, we reject the null hypothesis.

### Conclusion

At the 0.10 significance level, we have sufficient evidence to reject the null hypothesis and support the claim that the mean lead concentration in traditional medicines is less than [tex]\( 13 \, \mu \text{g} / \text{g} \)[/tex].