What is the value of [tex]$x$[/tex] in the equation [tex]\frac{2}{3}\left(\frac{1}{2} x+12\right)=\frac{1}{2}\left(\frac{1}{3} x+14\right)-3[/tex]?

A. [tex]-24[/tex]
B. [tex]-6[/tex]
C. [tex]-\frac{2}{3}[/tex]
D. [tex]0[/tex]



Answer :

To solve the equation [tex]\(\frac{2}{3}\left(\frac{1}{2} x+12\right) = \frac{1}{2}\left(\frac{1}{3} x+14\right) - 3\)[/tex], let's go through it step-by-step.

1. Expand both sides:

For the left side:
[tex]\[ \frac{2}{3} \left(\frac{1}{2} x + 12\right) = \frac{2}{3} \cdot \frac{1}{2} x + \frac{2}{3} \cdot 12 = \frac{1}{3} x + 8 \][/tex]

For the right side:
[tex]\[ \frac{1}{2} \left(\frac{1}{3} x + 14\right) - 3 = \frac{1}{2} \cdot \frac{1}{3} x + \frac{1}{2} \cdot 14 - 3 = \frac{1}{6} x + 7 - 3 = \frac{1}{6} x + 4 \][/tex]

2. Set up the equation with the expanded expressions:
[tex]\[ \frac{1}{3} x + 8 = \frac{1}{6} x + 4 \][/tex]

3. Eliminate the fractions by finding a common multiple:

The least common multiple of 3 and 6 is 6. Multiply both sides of the equation by 6 to clear the fractions:
[tex]\[ 6 \left(\frac{1}{3} x + 8\right) = 6 \left(\frac{1}{6} x + 4\right) \][/tex]
Simplifying this:
[tex]\[ 2x + 48 = x + 24 \][/tex]

4. Isolate [tex]\(x\)[/tex] on one side of the equation:

Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 2x - x + 48 = 24 \][/tex]
Simplifying:
[tex]\[ x + 48 = 24 \][/tex]

5. Solve for [tex]\(x\)[/tex]:

Subtract 48 from both sides:
[tex]\[ x = 24 - 48 \][/tex]
Simplifying:
[tex]\[ x = -24 \][/tex]

Thus, the value of [tex]\(x\)[/tex] is [tex]\(-24\)[/tex].

The correct answer is:
[tex]\[ -24 \][/tex]