Solve the inequality:
[tex]\[ 4 - \frac{2}{5} x \geq \frac{1}{3} x + 15 \][/tex]

(1) [tex]\( x \leq 11 \)[/tex]
(2) [tex]\( x \geq 11 \)[/tex]
(3) [tex]\( x \leq -15 \)[/tex]
(4) [tex]\( x \geq -15 \)[/tex]



Answer :

To solve the inequality [tex]\( 4 - \frac{2}{5}x \geq \frac{1}{3}x + 15 \)[/tex], follow these steps:

1. Move all terms involving [tex]\( x \)[/tex] to one side of the inequality:
[tex]\[ 4 - 15 \geq \frac{1}{3}x + \frac{2}{5}x \][/tex]

2. Simplify the constants on the left-hand side:
[tex]\[ 4 - 15 = -11 \][/tex]
So we have:
[tex]\[ -11 \geq \frac{1}{3}x + \frac{2}{5}x \][/tex]

3. Combine the [tex]\( x \)[/tex]-terms on the right:
[tex]\[ \frac{1}{3}x + \frac{2}{5}x \][/tex]
To combine these fractions, find a common denominator. The least common multiple of 3 and 5 is 15:
[tex]\[ \frac{1}{3}x = \frac{5}{15}x \quad \text{and} \quad \frac{2}{5}x = \frac{6}{15}x \][/tex]
So:
[tex]\[ \frac{5}{15}x + \frac{6}{15}x = \frac{11}{15}x \][/tex]
This gives us:
[tex]\[ -11 \geq \frac{11}{15}x \][/tex]

4. Solve for [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], divide both sides by [tex]\( \frac{11}{15} \)[/tex]:

[tex]\[ x = \frac{-11}{\frac{11}{15}} \][/tex]

5. Simplify the division:
[tex]\[ x = -11 \times \frac{15}{11} \][/tex]

Simplifying further:

[tex]\[ x = -15 \][/tex]

Therefore, the solution to the inequality [tex]\( 4 - \frac{2}{5}x \geq \frac{1}{3}x + 15 \)[/tex] is [tex]\( x \leq -15 \)[/tex].

The correct answer is:
- (3) [tex]\( x \leq -15 \)[/tex]