A solution has [tex]\left[ OH^{-} \right][/tex] of [tex]1 \times 10^{-12} \, M[/tex]. What is the [tex]\left[ H_3O^{+} \right][/tex] of the solution?

A. [tex]1 \times 10^{-14} \, M[/tex]
B. [tex]1 \times 10^{-2} \, M[/tex]
C. 2 M
D. 14 M



Answer :

To determine the concentration of hydronium ions [tex]\([H_3O^+]\)[/tex] in a solution given the concentration of hydroxide ions [tex]\([OH^-]\)[/tex], we need to use the ion-product constant for water at 25°C. This constant, [tex]\(K_w\)[/tex], is the product of the concentrations of [tex]\(H_3O^+\)[/tex] and [tex]\(OH^-\)[/tex] ions in water, and it is always [tex]\(1 \times 10^{-14}\)[/tex] M[tex]\(^2\)[/tex].

We're given:
[tex]\[ [OH^-] = 1 \times 10^{-12} \, \text{M} \][/tex]

The ion-product constant is:
[tex]\[ K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \, \text{M}^2 \][/tex]

To find the concentration of [tex]\(H_3O^+\)[/tex], we rearrange the equation to solve for [tex]\([H_3O^+]\)[/tex]:

[tex]\[ [H_3O^+] = \frac{K_w}{[OH^-]} \][/tex]

Substituting the known values:

[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14} \, \text{M}^2}{1 \times 10^{-12} \, \text{M}} \][/tex]

Simplifying the fraction:

[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14}}{1 \times 10^{-12}} = 1 \times 10^{-2} \, \text{M} \][/tex]

So, the concentration of [tex]\(H_3O^+\)[/tex] in the solution is:

[tex]\[ [H_3O^+] = 1 \times 10^{-2} \, \text{M} \][/tex]

Therefore, the correct answer is:

[tex]\[ 1 \times 10^{-2} \, \text{M} \][/tex]